Orhan Gazi

Modern C
'Programming

~ Indluding Standards (99, (11, C17, €23

2 Springer

Modern C Programming

Orhan Gazi

Modern C Programming
Including Standards C99, C11, C17, C23

@ Springer

Orhan Gazi

Electrical and Electronics Engineering
Ankara Medipol University

Alundag, Ankara, Tiirkiye

ISBN 978-3-031-45360-1 ISBN 978-3-031-45361-8 (eBook)
https://doi.org/10.1007/978-3-031-45361-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-45361-8

Preface

C programing language was introduced in 1972. After its introduction, it became the
most popular programming language in the world in short time. In every branch of
science and engineering, developments occur in time, and every technology needs to
update itself in time. Otherwise, it becomes old fashion in short time. Today, the
popularity cycle of technologies is becoming shorter.

C programming language was revised several times in the last several decades.
The recent C standards are tabulated in Table 1.

In Table 1, all the formal names start with the same expression IEC 9899, and
after symbol “:,” the year of the standard is written, i.e.,

ISO/IEC 9899:1999

ISO/IEC 9899:2011

ISO/IEC 9899:2018

ISO/IEC 9899:2023

The year of C17 standard is 2018. Some people may use the informal name as
C18. But in literature, it is seen that C17 was adopted by many authorities. Let’s
briefly give information about these standards.

Table 1 C language standards since 1999

Informal name Introduction year Formal name File name

C99 1999 ISO/IEC 9899:1999 N1256.pdf

Cl11 2011 ISO/IEC 9899:2011 N1570.pdf

C17 2018 ISO/IEC 9899:2018 N2310.pdf

C23 2023 ISO/IEC 9899:2023 N3096.pdf (last draft)

vi Preface

C99 Standard

Formal name of this standard is ISO/IEC 9899:1999. This standard is published in
1999. The file name of this standard is N1256.pdf. Using internet search engines, all
standard document can be found easily.

C99 standard made major contribution to the C language; the standard introduced
the header files

<complex.h> complex number arithmetic

<fenv.h> floating-point environment
<inttypes.h> formats for fixed-width integer types
<stdbool.h> macros for Boolean data type
<stdint.h> fixed-width integer data types
<tgmath.h> type-generic math

With the introduction of these header files, it became much easier to perform
complex mathematical calculations, and perform trigonometric operations. And
fixed-width integers were useful for efficient use of the resources.

New built-in data types introduced in C99 are

long long, wunsigned long long
_Bool, Complex, _Imaginary

inline, restrict

Variable length arrays were introduced in C99. Before C99, integer constants can
be used for array sizes, and they must be defined before the array declaration. In C99
standard, we can declare an array whose size is known at run time. That is, you can
get the array size from the user at run time.

In C99, the keyword static can be used inside the square brackets during array
declaration, for example:

void myFunc(int a[static 1)

{

// statements

}

Before C99, single line comments, //. . ., are not accepted. C99 introduced single
line comments. In addition, before C99, variable declarations must be done at the
beginning of the code; however, with C99, variable declarations can be made in any
place of the code.

Preface vii

C11 Standard

Formal name of this standard is ISO/IEC 9899:2011. The file name where the
standard is published is N1570.pdf. Using internet search engines, it is possible to
find all the document standards easily.

After C99 release, a major contribution to the C language is made by the C11
standard. The header files introduced in C11 standard are

<stdalign.h> alignas and alignof macros
<stdatomic.h> atomic operations
<stdnoreturn.h> noreturn macro

<threads.h> thread functions

<uchar.h> UTF- and UTF- encoding

With C11, standard parallel processing became possible using built in thread
functions, and it was possible to avoid the race problem occurring in parallel
processing using the atomic data types. Thread and atomic libraries were the
powerful contribution of C11 standard.

The keywords added by C11 standard are

_Alignas _Alignof _Atomic _Generic
_Noreturn _Static_assert _Thread_local
C17 Standard

The standard C17 does not introduce new language features. In this standard, just
some minor defects of the C11 standard are fixed.

C23 Standard

The major contribution of C23 standard is the introduction of two new header files

<stdckdint.h> functions and macros for checked integer arithmetic
<stdbit.h> functions and macros for bit manipulation

These files are useful to use the hardware as efficient as possible.

In this book, starting from the most basic topics of C programming language, we
cover new language features introduced in the standards. Chapter 1 focuses on the
representation of numbers in computer. This chapter is usually skipped in many C

https://doi.org/10.1007/978-3-031-45361-8_1

viii Preface

books. However, for a good understating of C programming, good knowledge of
number representations in computer is needed. We advise the reader to study the first
chapter before processing with C programming topics. Chapters 2, 3,4, 5, 6, 8, and 9
cover the common topics of all the standards. Chapter 10 explains the pointers in C
programming, and for good comprehension of this chapter, some knowledge about
digital hardware fundamentals is needed.

Complex numbers and fixed bit length integers are covered in Chaps. 7 and 13.
These concepts are introduced in C99 standard. In Chaps. 15 and 16, threads and
atomic data types are explained. These concepts are introduced in standard C11 and
they are also covered in C17 and C23. Macros, type qualifiers, storage classes,
signals, enumerations included in all standards are covered in Chaps. 11, 12, and 14.

This book can be adapted as a text or supplementary book for C programming for
a one-semester course, or it can be read for personal development.

I dedicate this book to my lovely brother Ilhan Gazi, and to those people who do
something useful for humanity.

Ankara, Turkiye Orhan Gazi
Wednesday, August 2, 2023

https://doi.org/10.1007/978-3-031-45361-8_2
https://doi.org/10.1007/978-3-031-45361-8_3
https://doi.org/10.1007/978-3-031-45361-8_4
https://doi.org/10.1007/978-3-031-45361-8_5
https://doi.org/10.1007/978-3-031-45361-8_6
https://doi.org/10.1007/978-3-031-45361-8_8
https://doi.org/10.1007/978-3-031-45361-8_9
https://doi.org/10.1007/978-3-031-45361-8_10
https://doi.org/10.1007/978-3-031-45361-8_7
https://doi.org/10.1007/978-3-031-45361-8_13
https://doi.org/10.1007/978-3-031-45361-8_15
https://doi.org/10.1007/978-3-031-45361-8_16
https://doi.org/10.1007/978-3-031-45361-8_11
https://doi.org/10.1007/978-3-031-45361-8_12
https://doi.org/10.1007/978-3-031-45361-8_14

Contents

1 Representation of Numbers and Characters in Computer 1

1.1 Number Bases. 1

1.1.1 Decimal Numbers. 1

1.1.2 Binary Numbers. 1

1.1.3 Octal Numbers. 2

1.1.4 Hexadecimal Numbers. 2

1.2 Conversion Between Bases 3

1.2.1 Binary to Decimal Conversion. 3

1.2.2 Binary to Octal Conversion. 3

1.2.3 Binary to Hexadecimal Conversion. 4

1.2.4 Decimal to Binary Conversion. 5

1.2.5 Octal to Binary Conversion. 6

1.2.6 Hexadecimal to Binary Conversion. 6

1.2.7 Hexadecimal to Decimal Conversion. 7

1.3 Positive Integers 8

1.4 Two’s Complement Form. 8

1.5 Negative Integers 10

1.6 Registers. 11

1.7 Memory Units ooo e 12
1.8 How Are the Integers Stored in Computer Memory,

Big-Endian, and Little-Endian?. 12

2 Data Types and Operators. 15

2.1 How to Start Writing a C Program?. 15

2.2 Comments in C Programming. 17

2.3 The First C Program. 17

24 Variables and Data Types. 19

2.5 Binary Number Representation in Modern C. 21

2.6 sizeof Operatorin C. 22

2.7 Unsigned Char Data Type. 23

ix

https://doi.org/10.1007/978-3-031-45361-8_1
https://doi.org/10.1007/978-3-031-45361-8_1
https://doi.org/10.1007/978-3-031-45361-8_1
https://doi.org/10.1007/978-3-031-45361-8_1#Sec1
https://doi.org/10.1007/978-3-031-45361-8_1#Sec1
https://doi.org/10.1007/978-3-031-45361-8_1#Sec1
https://doi.org/10.1007/978-3-031-45361-8_1#Sec2
https://doi.org/10.1007/978-3-031-45361-8_1#Sec2
https://doi.org/10.1007/978-3-031-45361-8_1#Sec2
https://doi.org/10.1007/978-3-031-45361-8_1#Sec3
https://doi.org/10.1007/978-3-031-45361-8_1#Sec3
https://doi.org/10.1007/978-3-031-45361-8_1#Sec3
https://doi.org/10.1007/978-3-031-45361-8_1#Sec4
https://doi.org/10.1007/978-3-031-45361-8_1#Sec4
https://doi.org/10.1007/978-3-031-45361-8_1#Sec4
https://doi.org/10.1007/978-3-031-45361-8_1#Sec5
https://doi.org/10.1007/978-3-031-45361-8_1#Sec5
https://doi.org/10.1007/978-3-031-45361-8_1#Sec5
https://doi.org/10.1007/978-3-031-45361-8_1#Sec6
https://doi.org/10.1007/978-3-031-45361-8_1#Sec6
https://doi.org/10.1007/978-3-031-45361-8_1#Sec6
https://doi.org/10.1007/978-3-031-45361-8_1#Sec7
https://doi.org/10.1007/978-3-031-45361-8_1#Sec7
https://doi.org/10.1007/978-3-031-45361-8_1#Sec7
https://doi.org/10.1007/978-3-031-45361-8_1#Sec8
https://doi.org/10.1007/978-3-031-45361-8_1#Sec8
https://doi.org/10.1007/978-3-031-45361-8_1#Sec8
https://doi.org/10.1007/978-3-031-45361-8_1#Sec9
https://doi.org/10.1007/978-3-031-45361-8_1#Sec9
https://doi.org/10.1007/978-3-031-45361-8_1#Sec9
https://doi.org/10.1007/978-3-031-45361-8_1#Sec10
https://doi.org/10.1007/978-3-031-45361-8_1#Sec10
https://doi.org/10.1007/978-3-031-45361-8_1#Sec10
https://doi.org/10.1007/978-3-031-45361-8_1#Sec11
https://doi.org/10.1007/978-3-031-45361-8_1#Sec11
https://doi.org/10.1007/978-3-031-45361-8_1#Sec11
https://doi.org/10.1007/978-3-031-45361-8_1#Sec12
https://doi.org/10.1007/978-3-031-45361-8_1#Sec12
https://doi.org/10.1007/978-3-031-45361-8_1#Sec12
https://doi.org/10.1007/978-3-031-45361-8_1#Sec13
https://doi.org/10.1007/978-3-031-45361-8_1#Sec13
https://doi.org/10.1007/978-3-031-45361-8_1#Sec13
https://doi.org/10.1007/978-3-031-45361-8_1#Sec14
https://doi.org/10.1007/978-3-031-45361-8_1#Sec14
https://doi.org/10.1007/978-3-031-45361-8_1#Sec14
https://doi.org/10.1007/978-3-031-45361-8_1#Sec15
https://doi.org/10.1007/978-3-031-45361-8_1#Sec15
https://doi.org/10.1007/978-3-031-45361-8_1#Sec15
https://doi.org/10.1007/978-3-031-45361-8_1#Sec16
https://doi.org/10.1007/978-3-031-45361-8_1#Sec16
https://doi.org/10.1007/978-3-031-45361-8_1#Sec16
https://doi.org/10.1007/978-3-031-45361-8_1#Sec17
https://doi.org/10.1007/978-3-031-45361-8_1#Sec17
https://doi.org/10.1007/978-3-031-45361-8_1#Sec17
https://doi.org/10.1007/978-3-031-45361-8_1#Sec18
https://doi.org/10.1007/978-3-031-45361-8_1#Sec18
https://doi.org/10.1007/978-3-031-45361-8_1#Sec18
https://doi.org/10.1007/978-3-031-45361-8_1#Sec19
https://doi.org/10.1007/978-3-031-45361-8_1#Sec19
https://doi.org/10.1007/978-3-031-45361-8_1#Sec19
https://doi.org/10.1007/978-3-031-45361-8_1#Sec19
https://doi.org/10.1007/978-3-031-45361-8_2
https://doi.org/10.1007/978-3-031-45361-8_2
https://doi.org/10.1007/978-3-031-45361-8_2
https://doi.org/10.1007/978-3-031-45361-8_2#Sec1
https://doi.org/10.1007/978-3-031-45361-8_2#Sec1
https://doi.org/10.1007/978-3-031-45361-8_2#Sec1
https://doi.org/10.1007/978-3-031-45361-8_2#Sec2
https://doi.org/10.1007/978-3-031-45361-8_2#Sec2
https://doi.org/10.1007/978-3-031-45361-8_2#Sec2
https://doi.org/10.1007/978-3-031-45361-8_2#Sec3
https://doi.org/10.1007/978-3-031-45361-8_2#Sec3
https://doi.org/10.1007/978-3-031-45361-8_2#Sec3
https://doi.org/10.1007/978-3-031-45361-8_2#Sec4
https://doi.org/10.1007/978-3-031-45361-8_2#Sec4
https://doi.org/10.1007/978-3-031-45361-8_2#Sec4
https://doi.org/10.1007/978-3-031-45361-8_2#Sec5
https://doi.org/10.1007/978-3-031-45361-8_2#Sec5
https://doi.org/10.1007/978-3-031-45361-8_2#Sec5
https://doi.org/10.1007/978-3-031-45361-8_2#Sec6
https://doi.org/10.1007/978-3-031-45361-8_2#Sec6
https://doi.org/10.1007/978-3-031-45361-8_2#Sec6
https://doi.org/10.1007/978-3-031-45361-8_2#Sec7
https://doi.org/10.1007/978-3-031-45361-8_2#Sec7
https://doi.org/10.1007/978-3-031-45361-8_2#Sec7

Contents

2.8 Left and Right Shift OperatorsinC. 25
2.9 Integer Data Type. 26
2.10 Hexadecimal and Octal Numbers. 28
2.11 How Are Integers Stored in Computer Memory?. 29
2.11.1 Short Integer Data Type 30
2.12 Why Do We Have Both Integer and Short Integer
Data Types?. . ..o oo 31
2.13 Long Integer and Long-Long Integer Data Types. 32
2.14 Unsigned Integer Data Type 34
2.15 Floating-Point NumberinC.......................... 39
2.15.1 IEEE 754 Floating-Point Standard
(Single Precision) o 39
2.16 Keyboard Input Using scanfin C...................... 41
2.17 Operators in C Programming 43
2.17.1 Arithmetic Operators. 43
2.17.2 Remainder Operator % 46
2.17.3 Augmented Assignment Operators. 47
2.17.4 Logical Operators. 47
2.17.5 Bitwise Operators in C. 50
2.17.6 Increment and Decrement Operators. 60
2.18 Operator Precedence 62
Type Conversionin C. 67
3.1 Type Conversion Methods 67
3.1.1 Implicit Conversion. 67
3.1.2 Explicit Conversion. 70
3.2 Information Loss When a Higher-Order Data Is
Converted to a Lower-Order Data. 73
33 Information Loss When Conversion Is Performed
Between Signed and Unsigned Data Types. 74
Structures. 77
4.1 Introduction. 77
4.2 Initialization of Structure Elements 78
4.3 Initialization Using Designated Initializer List. 79
4.4 Typedef for Structures L. 83
44.1 Alternative Use of typedef for Structures. 85
4.5 Nested Structureso vttt 86
4.6 Structure COpying oo oo v it et 88
4.7 Structures with Self-Referential 89
4.8 BitFields....... 91
4.9 Structures as Function Arguments. 92
4.10 Structure Padding and Packing in C Programming 93
401 Unions.o 94

https://doi.org/10.1007/978-3-031-45361-8_2#Sec8
https://doi.org/10.1007/978-3-031-45361-8_2#Sec8
https://doi.org/10.1007/978-3-031-45361-8_2#Sec8
https://doi.org/10.1007/978-3-031-45361-8_2#Sec9
https://doi.org/10.1007/978-3-031-45361-8_2#Sec9
https://doi.org/10.1007/978-3-031-45361-8_2#Sec9
https://doi.org/10.1007/978-3-031-45361-8_2#Sec10
https://doi.org/10.1007/978-3-031-45361-8_2#Sec10
https://doi.org/10.1007/978-3-031-45361-8_2#Sec10
https://doi.org/10.1007/978-3-031-45361-8_2#Sec11
https://doi.org/10.1007/978-3-031-45361-8_2#Sec11
https://doi.org/10.1007/978-3-031-45361-8_2#Sec11
https://doi.org/10.1007/978-3-031-45361-8_2#Sec12
https://doi.org/10.1007/978-3-031-45361-8_2#Sec12
https://doi.org/10.1007/978-3-031-45361-8_2#Sec12
https://doi.org/10.1007/978-3-031-45361-8_2#Sec13
https://doi.org/10.1007/978-3-031-45361-8_2#Sec13
https://doi.org/10.1007/978-3-031-45361-8_2#Sec13
https://doi.org/10.1007/978-3-031-45361-8_2#Sec13
https://doi.org/10.1007/978-3-031-45361-8_2#Sec14
https://doi.org/10.1007/978-3-031-45361-8_2#Sec14
https://doi.org/10.1007/978-3-031-45361-8_2#Sec14
https://doi.org/10.1007/978-3-031-45361-8_2#Sec15
https://doi.org/10.1007/978-3-031-45361-8_2#Sec15
https://doi.org/10.1007/978-3-031-45361-8_2#Sec15
https://doi.org/10.1007/978-3-031-45361-8_2#Sec16
https://doi.org/10.1007/978-3-031-45361-8_2#Sec16
https://doi.org/10.1007/978-3-031-45361-8_2#Sec16
https://doi.org/10.1007/978-3-031-45361-8_2#Sec17
https://doi.org/10.1007/978-3-031-45361-8_2#Sec17
https://doi.org/10.1007/978-3-031-45361-8_2#Sec17
https://doi.org/10.1007/978-3-031-45361-8_2#Sec17
https://doi.org/10.1007/978-3-031-45361-8_2#Sec18
https://doi.org/10.1007/978-3-031-45361-8_2#Sec18
https://doi.org/10.1007/978-3-031-45361-8_2#Sec18
https://doi.org/10.1007/978-3-031-45361-8_2#Sec19
https://doi.org/10.1007/978-3-031-45361-8_2#Sec19
https://doi.org/10.1007/978-3-031-45361-8_2#Sec19
https://doi.org/10.1007/978-3-031-45361-8_2#Sec20
https://doi.org/10.1007/978-3-031-45361-8_2#Sec20
https://doi.org/10.1007/978-3-031-45361-8_2#Sec20
https://doi.org/10.1007/978-3-031-45361-8_2#Sec23
https://doi.org/10.1007/978-3-031-45361-8_2#Sec23
https://doi.org/10.1007/978-3-031-45361-8_2#Sec23
https://doi.org/10.1007/978-3-031-45361-8_2#Sec24
https://doi.org/10.1007/978-3-031-45361-8_2#Sec24
https://doi.org/10.1007/978-3-031-45361-8_2#Sec24
https://doi.org/10.1007/978-3-031-45361-8_2#Sec25
https://doi.org/10.1007/978-3-031-45361-8_2#Sec25
https://doi.org/10.1007/978-3-031-45361-8_2#Sec25
https://doi.org/10.1007/978-3-031-45361-8_2#Sec26
https://doi.org/10.1007/978-3-031-45361-8_2#Sec26
https://doi.org/10.1007/978-3-031-45361-8_2#Sec26
https://doi.org/10.1007/978-3-031-45361-8_2#Sec27
https://doi.org/10.1007/978-3-031-45361-8_2#Sec27
https://doi.org/10.1007/978-3-031-45361-8_2#Sec27
https://doi.org/10.1007/978-3-031-45361-8_2#Sec28
https://doi.org/10.1007/978-3-031-45361-8_2#Sec28
https://doi.org/10.1007/978-3-031-45361-8_2#Sec28
https://doi.org/10.1007/978-3-031-45361-8_3
https://doi.org/10.1007/978-3-031-45361-8_3
https://doi.org/10.1007/978-3-031-45361-8_3
https://doi.org/10.1007/978-3-031-45361-8_3#Sec1
https://doi.org/10.1007/978-3-031-45361-8_3#Sec1
https://doi.org/10.1007/978-3-031-45361-8_3#Sec1
https://doi.org/10.1007/978-3-031-45361-8_3#Sec2
https://doi.org/10.1007/978-3-031-45361-8_3#Sec2
https://doi.org/10.1007/978-3-031-45361-8_3#Sec2
https://doi.org/10.1007/978-3-031-45361-8_3#Sec3
https://doi.org/10.1007/978-3-031-45361-8_3#Sec3
https://doi.org/10.1007/978-3-031-45361-8_3#Sec3
https://doi.org/10.1007/978-3-031-45361-8_3#Sec4
https://doi.org/10.1007/978-3-031-45361-8_3#Sec4
https://doi.org/10.1007/978-3-031-45361-8_3#Sec4
https://doi.org/10.1007/978-3-031-45361-8_3#Sec4
https://doi.org/10.1007/978-3-031-45361-8_3#Sec5
https://doi.org/10.1007/978-3-031-45361-8_3#Sec5
https://doi.org/10.1007/978-3-031-45361-8_3#Sec5
https://doi.org/10.1007/978-3-031-45361-8_3#Sec5
https://doi.org/10.1007/978-3-031-45361-8_4
https://doi.org/10.1007/978-3-031-45361-8_4
https://doi.org/10.1007/978-3-031-45361-8_4
https://doi.org/10.1007/978-3-031-45361-8_4#Sec1
https://doi.org/10.1007/978-3-031-45361-8_4#Sec1
https://doi.org/10.1007/978-3-031-45361-8_4#Sec1
https://doi.org/10.1007/978-3-031-45361-8_4#Sec2
https://doi.org/10.1007/978-3-031-45361-8_4#Sec2
https://doi.org/10.1007/978-3-031-45361-8_4#Sec2
https://doi.org/10.1007/978-3-031-45361-8_4#Sec3
https://doi.org/10.1007/978-3-031-45361-8_4#Sec3
https://doi.org/10.1007/978-3-031-45361-8_4#Sec3
https://doi.org/10.1007/978-3-031-45361-8_4#Sec4
https://doi.org/10.1007/978-3-031-45361-8_4#Sec4
https://doi.org/10.1007/978-3-031-45361-8_4#Sec4
https://doi.org/10.1007/978-3-031-45361-8_4#Sec5
https://doi.org/10.1007/978-3-031-45361-8_4#Sec5
https://doi.org/10.1007/978-3-031-45361-8_4#Sec5
https://doi.org/10.1007/978-3-031-45361-8_4#Sec6
https://doi.org/10.1007/978-3-031-45361-8_4#Sec6
https://doi.org/10.1007/978-3-031-45361-8_4#Sec6
https://doi.org/10.1007/978-3-031-45361-8_4#Sec7
https://doi.org/10.1007/978-3-031-45361-8_4#Sec7
https://doi.org/10.1007/978-3-031-45361-8_4#Sec7
https://doi.org/10.1007/978-3-031-45361-8_4#Sec8
https://doi.org/10.1007/978-3-031-45361-8_4#Sec8
https://doi.org/10.1007/978-3-031-45361-8_4#Sec8
https://doi.org/10.1007/978-3-031-45361-8_4#Sec9
https://doi.org/10.1007/978-3-031-45361-8_4#Sec9
https://doi.org/10.1007/978-3-031-45361-8_4#Sec9
https://doi.org/10.1007/978-3-031-45361-8_4#Sec10
https://doi.org/10.1007/978-3-031-45361-8_4#Sec10
https://doi.org/10.1007/978-3-031-45361-8_4#Sec10
https://doi.org/10.1007/978-3-031-45361-8_4#Sec11
https://doi.org/10.1007/978-3-031-45361-8_4#Sec11
https://doi.org/10.1007/978-3-031-45361-8_4#Sec11
https://doi.org/10.1007/978-3-031-45361-8_4#Sec12
https://doi.org/10.1007/978-3-031-45361-8_4#Sec12
https://doi.org/10.1007/978-3-031-45361-8_4#Sec12

Contents xi
5 Conditional Statements. 99
5.1 Conditional Structuret 99
5.2 Conditional Ladder Structure (-If Ladder) 104
53 Multiconditional Structures 107
5.4 Syntax of Nested If-Else 110
5.5 Conditional Operatorin C. 112
5.6 switch Statement. o L. 116
6 LoopStatements. 125
6.1 The For-Loopo 125
6.1.1 Nested For-Loop 138
6.2 The While-Loop e 140
6.2.1 Nested While-Loop. 144
6.3 The Do-While Loop. 147
6.4 Continue Statement.ottt 148
6.5 Break Statement. 150
7 Complex Numbers in Modern C Programming. 157
7.1 How to Define a Complex Number. 157
7.2 Complex Operations.ovi ittt 158
7.3 Calculation of Absolute Value (Norm, Modulus,
or Magnitude) of a Complex Number. 161
7.4 Complex Number Formation. 161
7.5 Calculation of the Conjugate of a Complex NumberinC. 162
7.6 Calculation of the Argument, That Is, Phase Angle,
of aComplex NumberinC.......................... 164
7.7 Calculation of Complex Exponentials. 164
7.8 Computation of the Complex Natural (Base-e)
Logarithm of a Complex Number. 165
7.9 Complex Power Calculation. 166
7.10 Square Root of a Complex Number. 167
7.11 Complex Trigonometric Functions 168
7.11.1 Thecsin Functions. 168
7.11.2 TheccosFunctions. 168
7.11.3 Thectan Functions. 169
7.11.4 Thecacos Functions. 170
7.11.5 Thecasin Functions. 170
7.11.6 Thecatan Functions. 171
7.11.7 Hyperbolic Functions 172
8 AITAYS. 175
8.1 Syntax for Array Declaration. 175
8.2 Accessing Array Elements. 175
8.3 Array Initialization Without Size. 177
8.4 Array Initialization Using Loops. 179
8.5 Strings as Array of Characters. 184

https://doi.org/10.1007/978-3-031-45361-8_5
https://doi.org/10.1007/978-3-031-45361-8_5
https://doi.org/10.1007/978-3-031-45361-8_5
https://doi.org/10.1007/978-3-031-45361-8_5#Sec1
https://doi.org/10.1007/978-3-031-45361-8_5#Sec1
https://doi.org/10.1007/978-3-031-45361-8_5#Sec1
https://doi.org/10.1007/978-3-031-45361-8_5#Sec2
https://doi.org/10.1007/978-3-031-45361-8_5#Sec2
https://doi.org/10.1007/978-3-031-45361-8_5#Sec2
https://doi.org/10.1007/978-3-031-45361-8_5#Sec3
https://doi.org/10.1007/978-3-031-45361-8_5#Sec3
https://doi.org/10.1007/978-3-031-45361-8_5#Sec3
https://doi.org/10.1007/978-3-031-45361-8_5#Sec4
https://doi.org/10.1007/978-3-031-45361-8_5#Sec4
https://doi.org/10.1007/978-3-031-45361-8_5#Sec4
https://doi.org/10.1007/978-3-031-45361-8_5#Sec5
https://doi.org/10.1007/978-3-031-45361-8_5#Sec5
https://doi.org/10.1007/978-3-031-45361-8_5#Sec5
https://doi.org/10.1007/978-3-031-45361-8_5#Sec6
https://doi.org/10.1007/978-3-031-45361-8_5#Sec6
https://doi.org/10.1007/978-3-031-45361-8_5#Sec6
https://doi.org/10.1007/978-3-031-45361-8_6
https://doi.org/10.1007/978-3-031-45361-8_6
https://doi.org/10.1007/978-3-031-45361-8_6
https://doi.org/10.1007/978-3-031-45361-8_6#Sec1
https://doi.org/10.1007/978-3-031-45361-8_6#Sec1
https://doi.org/10.1007/978-3-031-45361-8_6#Sec1
https://doi.org/10.1007/978-3-031-45361-8_6#Sec2
https://doi.org/10.1007/978-3-031-45361-8_6#Sec2
https://doi.org/10.1007/978-3-031-45361-8_6#Sec2
https://doi.org/10.1007/978-3-031-45361-8_6#Sec3
https://doi.org/10.1007/978-3-031-45361-8_6#Sec3
https://doi.org/10.1007/978-3-031-45361-8_6#Sec3
https://doi.org/10.1007/978-3-031-45361-8_6#Sec4
https://doi.org/10.1007/978-3-031-45361-8_6#Sec4
https://doi.org/10.1007/978-3-031-45361-8_6#Sec4
https://doi.org/10.1007/978-3-031-45361-8_6#Sec5
https://doi.org/10.1007/978-3-031-45361-8_6#Sec5
https://doi.org/10.1007/978-3-031-45361-8_6#Sec5
https://doi.org/10.1007/978-3-031-45361-8_6#Sec6
https://doi.org/10.1007/978-3-031-45361-8_6#Sec6
https://doi.org/10.1007/978-3-031-45361-8_6#Sec6
https://doi.org/10.1007/978-3-031-45361-8_6#Sec7
https://doi.org/10.1007/978-3-031-45361-8_6#Sec7
https://doi.org/10.1007/978-3-031-45361-8_6#Sec7
https://doi.org/10.1007/978-3-031-45361-8_7
https://doi.org/10.1007/978-3-031-45361-8_7
https://doi.org/10.1007/978-3-031-45361-8_7
https://doi.org/10.1007/978-3-031-45361-8_7#Sec1
https://doi.org/10.1007/978-3-031-45361-8_7#Sec1
https://doi.org/10.1007/978-3-031-45361-8_7#Sec1
https://doi.org/10.1007/978-3-031-45361-8_7#Sec2
https://doi.org/10.1007/978-3-031-45361-8_7#Sec2
https://doi.org/10.1007/978-3-031-45361-8_7#Sec2
https://doi.org/10.1007/978-3-031-45361-8_7#Sec3
https://doi.org/10.1007/978-3-031-45361-8_7#Sec3
https://doi.org/10.1007/978-3-031-45361-8_7#Sec3
https://doi.org/10.1007/978-3-031-45361-8_7#Sec3
https://doi.org/10.1007/978-3-031-45361-8_7#Sec4
https://doi.org/10.1007/978-3-031-45361-8_7#Sec4
https://doi.org/10.1007/978-3-031-45361-8_7#Sec4
https://doi.org/10.1007/978-3-031-45361-8_7#Sec5
https://doi.org/10.1007/978-3-031-45361-8_7#Sec5
https://doi.org/10.1007/978-3-031-45361-8_7#Sec5
https://doi.org/10.1007/978-3-031-45361-8_7#Sec6
https://doi.org/10.1007/978-3-031-45361-8_7#Sec6
https://doi.org/10.1007/978-3-031-45361-8_7#Sec6
https://doi.org/10.1007/978-3-031-45361-8_7#Sec6
https://doi.org/10.1007/978-3-031-45361-8_7#Sec7
https://doi.org/10.1007/978-3-031-45361-8_7#Sec7
https://doi.org/10.1007/978-3-031-45361-8_7#Sec7
https://doi.org/10.1007/978-3-031-45361-8_7#Sec8
https://doi.org/10.1007/978-3-031-45361-8_7#Sec8
https://doi.org/10.1007/978-3-031-45361-8_7#Sec8
https://doi.org/10.1007/978-3-031-45361-8_7#Sec8
https://doi.org/10.1007/978-3-031-45361-8_7#Sec9
https://doi.org/10.1007/978-3-031-45361-8_7#Sec9
https://doi.org/10.1007/978-3-031-45361-8_7#Sec9
https://doi.org/10.1007/978-3-031-45361-8_7#Sec10
https://doi.org/10.1007/978-3-031-45361-8_7#Sec10
https://doi.org/10.1007/978-3-031-45361-8_7#Sec10
https://doi.org/10.1007/978-3-031-45361-8_7#Sec11
https://doi.org/10.1007/978-3-031-45361-8_7#Sec11
https://doi.org/10.1007/978-3-031-45361-8_7#Sec11
https://doi.org/10.1007/978-3-031-45361-8_7#Sec12
https://doi.org/10.1007/978-3-031-45361-8_7#Sec12
https://doi.org/10.1007/978-3-031-45361-8_7#Sec12
https://doi.org/10.1007/978-3-031-45361-8_7#Sec13
https://doi.org/10.1007/978-3-031-45361-8_7#Sec13
https://doi.org/10.1007/978-3-031-45361-8_7#Sec13
https://doi.org/10.1007/978-3-031-45361-8_7#Sec14
https://doi.org/10.1007/978-3-031-45361-8_7#Sec14
https://doi.org/10.1007/978-3-031-45361-8_7#Sec14
https://doi.org/10.1007/978-3-031-45361-8_7#Sec15
https://doi.org/10.1007/978-3-031-45361-8_7#Sec15
https://doi.org/10.1007/978-3-031-45361-8_7#Sec15
https://doi.org/10.1007/978-3-031-45361-8_7#Sec16
https://doi.org/10.1007/978-3-031-45361-8_7#Sec16
https://doi.org/10.1007/978-3-031-45361-8_7#Sec16
https://doi.org/10.1007/978-3-031-45361-8_7#Sec17
https://doi.org/10.1007/978-3-031-45361-8_7#Sec17
https://doi.org/10.1007/978-3-031-45361-8_7#Sec17
https://doi.org/10.1007/978-3-031-45361-8_7#Sec18
https://doi.org/10.1007/978-3-031-45361-8_7#Sec18
https://doi.org/10.1007/978-3-031-45361-8_7#Sec18
https://doi.org/10.1007/978-3-031-45361-8_8
https://doi.org/10.1007/978-3-031-45361-8_8
https://doi.org/10.1007/978-3-031-45361-8_8
https://doi.org/10.1007/978-3-031-45361-8_8#Sec1
https://doi.org/10.1007/978-3-031-45361-8_8#Sec1
https://doi.org/10.1007/978-3-031-45361-8_8#Sec1
https://doi.org/10.1007/978-3-031-45361-8_8#Sec2
https://doi.org/10.1007/978-3-031-45361-8_8#Sec2
https://doi.org/10.1007/978-3-031-45361-8_8#Sec2
https://doi.org/10.1007/978-3-031-45361-8_8#Sec3
https://doi.org/10.1007/978-3-031-45361-8_8#Sec3
https://doi.org/10.1007/978-3-031-45361-8_8#Sec3
https://doi.org/10.1007/978-3-031-45361-8_8#Sec4
https://doi.org/10.1007/978-3-031-45361-8_8#Sec4
https://doi.org/10.1007/978-3-031-45361-8_8#Sec4
https://doi.org/10.1007/978-3-031-45361-8_8#Sec5
https://doi.org/10.1007/978-3-031-45361-8_8#Sec5
https://doi.org/10.1007/978-3-031-45361-8_8#Sec5

Xii

10

11

Contents

8.6 Multidimensional Arrays. i 185
8.7 Passing an Array to a FunctioninC.................... 189
Functions. 193
9.1 Introduction. 193
9.2 Typesof Functions., 197
9.3 Passing Parameters to Functions 198
94 Returning More Than One Value 200
9.5 Recursive Functions 202
9.6 Nested Functions 205
Pointers. 207
10.1 Definition.t 207
10.2 AddressofaVariable. 207
10.3 NULLPointer. 215
104 VoidPointer. 215
10.5 TypesofPointers. 221
10.5.1 Pointer to a Constant Value. 221

10.5.2 Pointer to a Constant Address (Constant Pointer). . . 223

10.5.3 Constant Pointer to a Constant Value. 224

10.6 Function Pointers. 224
10.6.1 Functions Returning Pointers. 228

10.7 Pointers and Arrays. coii it 230
10.8 Multiple Pointers. 237
10.9 Heap Stack and Code Memories. 239
10.10 Dynamic Memory Allocation. 240
10.10.1 malloc() Function. 241

10.10.2 calloc() Function. 245

10.10.3 free() Function. 246

10.10.4 realloc() Function. 247

10.11 Memory Functions. 248
10.11.1 Memset Function. 248

10.11.2 Memcpy Function. 249

10.11.3 Memmove Function. 250

10.11.4 Memcmp Function. 251
Directives and Macrosin C. 259
11.1 Introduction. 259
11.2 Preprocessor Directives as Macros. 259
11.3 Macrosas Functions. 261
11.4 Multiline MacroS. oottt e 262
11.5 Directives Used for File Inclusion. 265
11.6 Predefined Macros. 267
11.7 Conditional Compilation. 270

11.8 Concatenation Operator ##. 274

https://doi.org/10.1007/978-3-031-45361-8_8#Sec6
https://doi.org/10.1007/978-3-031-45361-8_8#Sec6
https://doi.org/10.1007/978-3-031-45361-8_8#Sec6
https://doi.org/10.1007/978-3-031-45361-8_8#Sec7
https://doi.org/10.1007/978-3-031-45361-8_8#Sec7
https://doi.org/10.1007/978-3-031-45361-8_8#Sec7
https://doi.org/10.1007/978-3-031-45361-8_9
https://doi.org/10.1007/978-3-031-45361-8_9
https://doi.org/10.1007/978-3-031-45361-8_9
https://doi.org/10.1007/978-3-031-45361-8_9#Sec1
https://doi.org/10.1007/978-3-031-45361-8_9#Sec1
https://doi.org/10.1007/978-3-031-45361-8_9#Sec1
https://doi.org/10.1007/978-3-031-45361-8_9#Sec2
https://doi.org/10.1007/978-3-031-45361-8_9#Sec2
https://doi.org/10.1007/978-3-031-45361-8_9#Sec2
https://doi.org/10.1007/978-3-031-45361-8_9#Sec3
https://doi.org/10.1007/978-3-031-45361-8_9#Sec3
https://doi.org/10.1007/978-3-031-45361-8_9#Sec3
https://doi.org/10.1007/978-3-031-45361-8_9#Sec4
https://doi.org/10.1007/978-3-031-45361-8_9#Sec4
https://doi.org/10.1007/978-3-031-45361-8_9#Sec4
https://doi.org/10.1007/978-3-031-45361-8_9#Sec5
https://doi.org/10.1007/978-3-031-45361-8_9#Sec5
https://doi.org/10.1007/978-3-031-45361-8_9#Sec5
https://doi.org/10.1007/978-3-031-45361-8_9#Sec6
https://doi.org/10.1007/978-3-031-45361-8_9#Sec6
https://doi.org/10.1007/978-3-031-45361-8_9#Sec6
https://doi.org/10.1007/978-3-031-45361-8_10
https://doi.org/10.1007/978-3-031-45361-8_10
https://doi.org/10.1007/978-3-031-45361-8_10
https://doi.org/10.1007/978-3-031-45361-8_10#Sec1
https://doi.org/10.1007/978-3-031-45361-8_10#Sec1
https://doi.org/10.1007/978-3-031-45361-8_10#Sec1
https://doi.org/10.1007/978-3-031-45361-8_10#Sec2
https://doi.org/10.1007/978-3-031-45361-8_10#Sec2
https://doi.org/10.1007/978-3-031-45361-8_10#Sec2
https://doi.org/10.1007/978-3-031-45361-8_10#Sec3
https://doi.org/10.1007/978-3-031-45361-8_10#Sec3
https://doi.org/10.1007/978-3-031-45361-8_10#Sec3
https://doi.org/10.1007/978-3-031-45361-8_10#Sec4
https://doi.org/10.1007/978-3-031-45361-8_10#Sec4
https://doi.org/10.1007/978-3-031-45361-8_10#Sec4
https://doi.org/10.1007/978-3-031-45361-8_10#Sec5
https://doi.org/10.1007/978-3-031-45361-8_10#Sec5
https://doi.org/10.1007/978-3-031-45361-8_10#Sec5
https://doi.org/10.1007/978-3-031-45361-8_10#Sec6
https://doi.org/10.1007/978-3-031-45361-8_10#Sec6
https://doi.org/10.1007/978-3-031-45361-8_10#Sec6
https://doi.org/10.1007/978-3-031-45361-8_10#Sec7
https://doi.org/10.1007/978-3-031-45361-8_10#Sec7
https://doi.org/10.1007/978-3-031-45361-8_10#Sec7
https://doi.org/10.1007/978-3-031-45361-8_10#Sec8
https://doi.org/10.1007/978-3-031-45361-8_10#Sec8
https://doi.org/10.1007/978-3-031-45361-8_10#Sec8
https://doi.org/10.1007/978-3-031-45361-8_10#Sec9
https://doi.org/10.1007/978-3-031-45361-8_10#Sec9
https://doi.org/10.1007/978-3-031-45361-8_10#Sec9
https://doi.org/10.1007/978-3-031-45361-8_10#Sec10
https://doi.org/10.1007/978-3-031-45361-8_10#Sec10
https://doi.org/10.1007/978-3-031-45361-8_10#Sec10
https://doi.org/10.1007/978-3-031-45361-8_10#Sec11
https://doi.org/10.1007/978-3-031-45361-8_10#Sec11
https://doi.org/10.1007/978-3-031-45361-8_10#Sec11
https://doi.org/10.1007/978-3-031-45361-8_10#Sec12
https://doi.org/10.1007/978-3-031-45361-8_10#Sec12
https://doi.org/10.1007/978-3-031-45361-8_10#Sec12
https://doi.org/10.1007/978-3-031-45361-8_10#Sec13
https://doi.org/10.1007/978-3-031-45361-8_10#Sec13
https://doi.org/10.1007/978-3-031-45361-8_10#Sec13
https://doi.org/10.1007/978-3-031-45361-8_10#Sec14
https://doi.org/10.1007/978-3-031-45361-8_10#Sec14
https://doi.org/10.1007/978-3-031-45361-8_10#Sec14
https://doi.org/10.1007/978-3-031-45361-8_10#Sec15
https://doi.org/10.1007/978-3-031-45361-8_10#Sec15
https://doi.org/10.1007/978-3-031-45361-8_10#Sec15
https://doi.org/10.1007/978-3-031-45361-8_10#Sec16
https://doi.org/10.1007/978-3-031-45361-8_10#Sec16
https://doi.org/10.1007/978-3-031-45361-8_10#Sec16
https://doi.org/10.1007/978-3-031-45361-8_10#Sec17
https://doi.org/10.1007/978-3-031-45361-8_10#Sec17
https://doi.org/10.1007/978-3-031-45361-8_10#Sec17
https://doi.org/10.1007/978-3-031-45361-8_10#Sec18
https://doi.org/10.1007/978-3-031-45361-8_10#Sec18
https://doi.org/10.1007/978-3-031-45361-8_10#Sec18
https://doi.org/10.1007/978-3-031-45361-8_10#Sec19
https://doi.org/10.1007/978-3-031-45361-8_10#Sec19
https://doi.org/10.1007/978-3-031-45361-8_10#Sec19
https://doi.org/10.1007/978-3-031-45361-8_10#Sec20
https://doi.org/10.1007/978-3-031-45361-8_10#Sec20
https://doi.org/10.1007/978-3-031-45361-8_10#Sec20
https://doi.org/10.1007/978-3-031-45361-8_10#Sec21
https://doi.org/10.1007/978-3-031-45361-8_10#Sec21
https://doi.org/10.1007/978-3-031-45361-8_10#Sec21
https://doi.org/10.1007/978-3-031-45361-8_10#Sec22
https://doi.org/10.1007/978-3-031-45361-8_10#Sec22
https://doi.org/10.1007/978-3-031-45361-8_10#Sec22
https://doi.org/10.1007/978-3-031-45361-8_10#Sec23
https://doi.org/10.1007/978-3-031-45361-8_10#Sec23
https://doi.org/10.1007/978-3-031-45361-8_10#Sec23
https://doi.org/10.1007/978-3-031-45361-8_11
https://doi.org/10.1007/978-3-031-45361-8_11
https://doi.org/10.1007/978-3-031-45361-8_11
https://doi.org/10.1007/978-3-031-45361-8_11#Sec1
https://doi.org/10.1007/978-3-031-45361-8_11#Sec1
https://doi.org/10.1007/978-3-031-45361-8_11#Sec1
https://doi.org/10.1007/978-3-031-45361-8_11#Sec2
https://doi.org/10.1007/978-3-031-45361-8_11#Sec2
https://doi.org/10.1007/978-3-031-45361-8_11#Sec2
https://doi.org/10.1007/978-3-031-45361-8_11#Sec3
https://doi.org/10.1007/978-3-031-45361-8_11#Sec3
https://doi.org/10.1007/978-3-031-45361-8_11#Sec3
https://doi.org/10.1007/978-3-031-45361-8_11#Sec4
https://doi.org/10.1007/978-3-031-45361-8_11#Sec4
https://doi.org/10.1007/978-3-031-45361-8_11#Sec4
https://doi.org/10.1007/978-3-031-45361-8_11#Sec5
https://doi.org/10.1007/978-3-031-45361-8_11#Sec5
https://doi.org/10.1007/978-3-031-45361-8_11#Sec5
https://doi.org/10.1007/978-3-031-45361-8_11#Sec6
https://doi.org/10.1007/978-3-031-45361-8_11#Sec6
https://doi.org/10.1007/978-3-031-45361-8_11#Sec6
https://doi.org/10.1007/978-3-031-45361-8_11#Sec7
https://doi.org/10.1007/978-3-031-45361-8_11#Sec7
https://doi.org/10.1007/978-3-031-45361-8_11#Sec7
https://doi.org/10.1007/978-3-031-45361-8_11#Sec8
https://doi.org/10.1007/978-3-031-45361-8_11#Sec8
https://doi.org/10.1007/978-3-031-45361-8_11#Sec8

Contents xiii
12 Type Qualifiers, Enumerations, and Storage Classesin C. 277
12.1 TypeQualifiersin C....... 277
12.1.1 0 Const. ..o vttt 277

12,12 ReStriCt. . .o oot 279

12.1.3 Volatile. 279

12.2 Storage Classes in C. 280
1221 AUtO. ..o 280

1222 EXterN.ottt 280

1223 Static. 283

1224 RegiSter.o vttt 284

13 Integer with Exactly NBits. 289
13.1 General Form of Fixed Width Integers. 289

13.2 Macros for printfand scanf. 289

133 wintN_t. ... 293

13.4 int_leastN_t. 295

135 uint_leastN_t. 296

13.6 int_fastN_t. 296

137 uint_fastN_t. 297

13.8° Macros forprintf. 298

139 Macrosforscanf............ 298

14 Signalsin C. 303
14.1 Introduction.iin . 303

142 SignalHandling. 304

143 SIGINT 304

144 SIGQUIT.o e 308

14.5 Artificial Signal Generation. 310

14.6 Some of the Most Used Signals. 311

15 Threadsin C........ 313
15.1 Introduction. i, 313

152 Thread Creation.ttt 313

15.3 Parallel Processing Using Threads 314

15.4 pthread_exit() Function. 321

15.5 pthread_join() Function. 323

15.6 pthread_self() Function. 329

15.7 pthread_equal() Function. 330

15.8 pthread_cancel() Function. 331

159 pthread_detach() Function. 331
15.10 Synchronizing Threads with Mutexes. 332

https://doi.org/10.1007/978-3-031-45361-8_12
https://doi.org/10.1007/978-3-031-45361-8_12
https://doi.org/10.1007/978-3-031-45361-8_12
https://doi.org/10.1007/978-3-031-45361-8_12#Sec1
https://doi.org/10.1007/978-3-031-45361-8_12#Sec1
https://doi.org/10.1007/978-3-031-45361-8_12#Sec1
https://doi.org/10.1007/978-3-031-45361-8_12#Sec2
https://doi.org/10.1007/978-3-031-45361-8_12#Sec2
https://doi.org/10.1007/978-3-031-45361-8_12#Sec2
https://doi.org/10.1007/978-3-031-45361-8_12#Sec3
https://doi.org/10.1007/978-3-031-45361-8_12#Sec3
https://doi.org/10.1007/978-3-031-45361-8_12#Sec3
https://doi.org/10.1007/978-3-031-45361-8_12#Sec4
https://doi.org/10.1007/978-3-031-45361-8_12#Sec4
https://doi.org/10.1007/978-3-031-45361-8_12#Sec4
https://doi.org/10.1007/978-3-031-45361-8_12#Sec5
https://doi.org/10.1007/978-3-031-45361-8_12#Sec5
https://doi.org/10.1007/978-3-031-45361-8_12#Sec5
https://doi.org/10.1007/978-3-031-45361-8_12#Sec6
https://doi.org/10.1007/978-3-031-45361-8_12#Sec6
https://doi.org/10.1007/978-3-031-45361-8_12#Sec6
https://doi.org/10.1007/978-3-031-45361-8_12#Sec7
https://doi.org/10.1007/978-3-031-45361-8_12#Sec7
https://doi.org/10.1007/978-3-031-45361-8_12#Sec7
https://doi.org/10.1007/978-3-031-45361-8_12#Sec8
https://doi.org/10.1007/978-3-031-45361-8_12#Sec8
https://doi.org/10.1007/978-3-031-45361-8_12#Sec8
https://doi.org/10.1007/978-3-031-45361-8_12#Sec9
https://doi.org/10.1007/978-3-031-45361-8_12#Sec9
https://doi.org/10.1007/978-3-031-45361-8_12#Sec9
https://doi.org/10.1007/978-3-031-45361-8_13
https://doi.org/10.1007/978-3-031-45361-8_13
https://doi.org/10.1007/978-3-031-45361-8_13
https://doi.org/10.1007/978-3-031-45361-8_13#Sec1
https://doi.org/10.1007/978-3-031-45361-8_13#Sec1
https://doi.org/10.1007/978-3-031-45361-8_13#Sec1
https://doi.org/10.1007/978-3-031-45361-8_13#Sec2
https://doi.org/10.1007/978-3-031-45361-8_13#Sec2
https://doi.org/10.1007/978-3-031-45361-8_13#Sec2
https://doi.org/10.1007/978-3-031-45361-8_13#Sec3
https://doi.org/10.1007/978-3-031-45361-8_13#Sec3
https://doi.org/10.1007/978-3-031-45361-8_13#Sec3
https://doi.org/10.1007/978-3-031-45361-8_13#Sec4
https://doi.org/10.1007/978-3-031-45361-8_13#Sec4
https://doi.org/10.1007/978-3-031-45361-8_13#Sec4
https://doi.org/10.1007/978-3-031-45361-8_13#Sec5
https://doi.org/10.1007/978-3-031-45361-8_13#Sec5
https://doi.org/10.1007/978-3-031-45361-8_13#Sec5
https://doi.org/10.1007/978-3-031-45361-8_13#Sec6
https://doi.org/10.1007/978-3-031-45361-8_13#Sec6
https://doi.org/10.1007/978-3-031-45361-8_13#Sec6
https://doi.org/10.1007/978-3-031-45361-8_13#Sec7
https://doi.org/10.1007/978-3-031-45361-8_13#Sec7
https://doi.org/10.1007/978-3-031-45361-8_13#Sec7
https://doi.org/10.1007/978-3-031-45361-8_13#Sec8
https://doi.org/10.1007/978-3-031-45361-8_13#Sec8
https://doi.org/10.1007/978-3-031-45361-8_13#Sec8
https://doi.org/10.1007/978-3-031-45361-8_13#Sec9
https://doi.org/10.1007/978-3-031-45361-8_13#Sec9
https://doi.org/10.1007/978-3-031-45361-8_13#Sec9
https://doi.org/10.1007/978-3-031-45361-8_14
https://doi.org/10.1007/978-3-031-45361-8_14
https://doi.org/10.1007/978-3-031-45361-8_14
https://doi.org/10.1007/978-3-031-45361-8_14#Sec1
https://doi.org/10.1007/978-3-031-45361-8_14#Sec1
https://doi.org/10.1007/978-3-031-45361-8_14#Sec1
https://doi.org/10.1007/978-3-031-45361-8_14#Sec2
https://doi.org/10.1007/978-3-031-45361-8_14#Sec2
https://doi.org/10.1007/978-3-031-45361-8_14#Sec2
https://doi.org/10.1007/978-3-031-45361-8_14#Sec3
https://doi.org/10.1007/978-3-031-45361-8_14#Sec3
https://doi.org/10.1007/978-3-031-45361-8_14#Sec3
https://doi.org/10.1007/978-3-031-45361-8_14#Sec4
https://doi.org/10.1007/978-3-031-45361-8_14#Sec4
https://doi.org/10.1007/978-3-031-45361-8_14#Sec4
https://doi.org/10.1007/978-3-031-45361-8_14#Sec5
https://doi.org/10.1007/978-3-031-45361-8_14#Sec5
https://doi.org/10.1007/978-3-031-45361-8_14#Sec5
https://doi.org/10.1007/978-3-031-45361-8_14#Sec6
https://doi.org/10.1007/978-3-031-45361-8_14#Sec6
https://doi.org/10.1007/978-3-031-45361-8_14#Sec6
https://doi.org/10.1007/978-3-031-45361-8_15
https://doi.org/10.1007/978-3-031-45361-8_15
https://doi.org/10.1007/978-3-031-45361-8_15
https://doi.org/10.1007/978-3-031-45361-8_15#Sec1
https://doi.org/10.1007/978-3-031-45361-8_15#Sec1
https://doi.org/10.1007/978-3-031-45361-8_15#Sec1
https://doi.org/10.1007/978-3-031-45361-8_15#Sec2
https://doi.org/10.1007/978-3-031-45361-8_15#Sec2
https://doi.org/10.1007/978-3-031-45361-8_15#Sec2
https://doi.org/10.1007/978-3-031-45361-8_15#Sec3
https://doi.org/10.1007/978-3-031-45361-8_15#Sec3
https://doi.org/10.1007/978-3-031-45361-8_15#Sec3
https://doi.org/10.1007/978-3-031-45361-8_15#Sec4
https://doi.org/10.1007/978-3-031-45361-8_15#Sec4
https://doi.org/10.1007/978-3-031-45361-8_15#Sec4
https://doi.org/10.1007/978-3-031-45361-8_15#Sec5
https://doi.org/10.1007/978-3-031-45361-8_15#Sec5
https://doi.org/10.1007/978-3-031-45361-8_15#Sec5
https://doi.org/10.1007/978-3-031-45361-8_15#Sec6
https://doi.org/10.1007/978-3-031-45361-8_15#Sec6
https://doi.org/10.1007/978-3-031-45361-8_15#Sec6
https://doi.org/10.1007/978-3-031-45361-8_15#Sec7
https://doi.org/10.1007/978-3-031-45361-8_15#Sec7
https://doi.org/10.1007/978-3-031-45361-8_15#Sec7
https://doi.org/10.1007/978-3-031-45361-8_15#Sec8
https://doi.org/10.1007/978-3-031-45361-8_15#Sec8
https://doi.org/10.1007/978-3-031-45361-8_15#Sec8
https://doi.org/10.1007/978-3-031-45361-8_15#Sec9
https://doi.org/10.1007/978-3-031-45361-8_15#Sec9
https://doi.org/10.1007/978-3-031-45361-8_15#Sec9
https://doi.org/10.1007/978-3-031-45361-8_15#Sec10
https://doi.org/10.1007/978-3-031-45361-8_15#Sec10
https://doi.org/10.1007/978-3-031-45361-8_15#Sec10

Xiv Contents
16 Atomic Data Types........... i, 343
16.1 How to Define an Atomic Data Type?. 343

16.2 Atomic Integer Types. 344

163 Atomic Pointers. 346

16.4 Race Prevention by Atomic Variables. 347

16.5 Lock-Free Atomic Types. io... 352

16.6 Atomic Assignments, Operators, and Functions. 353

16.7 Atomic Functions............... 354
16.7.1 atomic_is_lock_free() Function. 354

16.7.2 atomic_fetch_key() Function.................. 354

16.7.3 atomic_store() Function. 357

16.7.4 atomic_load() Function. 358

16.7.5 atomic_exchange() Function. 359

16.7.6 Comparison Functions 360

16.7.7 atomic_flagMacro. 362

16.7.8 atomic_init() Function. 363

16,8 Memory OrderinC.......... 364
16.8.1 Acquire, Release, and Consume 364

1682 Memory Order. 365

16.8.3 Atomic Functions with Memory Order. 367

17 FileOperationsin C. 369
17.1 Fle Types. . . oot e e e 369

172 File Operations.oiiiiiiiiiinnnnnnn.. 369
1721 OpeningaFile.......... 369

1722 ClosingaPFile....... 370

17.2.3 Reading and Writing of a TextFile. 371

17.2.4 Reading and Writing of a Binary File. 379
Bibliography 387
Index 389

https://doi.org/10.1007/978-3-031-45361-8_16
https://doi.org/10.1007/978-3-031-45361-8_16
https://doi.org/10.1007/978-3-031-45361-8_16
https://doi.org/10.1007/978-3-031-45361-8_16#Sec1
https://doi.org/10.1007/978-3-031-45361-8_16#Sec1
https://doi.org/10.1007/978-3-031-45361-8_16#Sec1
https://doi.org/10.1007/978-3-031-45361-8_16#Sec2
https://doi.org/10.1007/978-3-031-45361-8_16#Sec2
https://doi.org/10.1007/978-3-031-45361-8_16#Sec2
https://doi.org/10.1007/978-3-031-45361-8_16#Sec3
https://doi.org/10.1007/978-3-031-45361-8_16#Sec3
https://doi.org/10.1007/978-3-031-45361-8_16#Sec3
https://doi.org/10.1007/978-3-031-45361-8_16#Sec4
https://doi.org/10.1007/978-3-031-45361-8_16#Sec4
https://doi.org/10.1007/978-3-031-45361-8_16#Sec4
https://doi.org/10.1007/978-3-031-45361-8_16#Sec5
https://doi.org/10.1007/978-3-031-45361-8_16#Sec5
https://doi.org/10.1007/978-3-031-45361-8_16#Sec5
https://doi.org/10.1007/978-3-031-45361-8_16#Sec6
https://doi.org/10.1007/978-3-031-45361-8_16#Sec6
https://doi.org/10.1007/978-3-031-45361-8_16#Sec6
https://doi.org/10.1007/978-3-031-45361-8_16#Sec7
https://doi.org/10.1007/978-3-031-45361-8_16#Sec7
https://doi.org/10.1007/978-3-031-45361-8_16#Sec7
https://doi.org/10.1007/978-3-031-45361-8_16#Sec8
https://doi.org/10.1007/978-3-031-45361-8_16#Sec8
https://doi.org/10.1007/978-3-031-45361-8_16#Sec8
https://doi.org/10.1007/978-3-031-45361-8_16#Sec9
https://doi.org/10.1007/978-3-031-45361-8_16#Sec9
https://doi.org/10.1007/978-3-031-45361-8_16#Sec9
https://doi.org/10.1007/978-3-031-45361-8_16#Sec10
https://doi.org/10.1007/978-3-031-45361-8_16#Sec10
https://doi.org/10.1007/978-3-031-45361-8_16#Sec10
https://doi.org/10.1007/978-3-031-45361-8_16#Sec11
https://doi.org/10.1007/978-3-031-45361-8_16#Sec11
https://doi.org/10.1007/978-3-031-45361-8_16#Sec11
https://doi.org/10.1007/978-3-031-45361-8_16#Sec12
https://doi.org/10.1007/978-3-031-45361-8_16#Sec12
https://doi.org/10.1007/978-3-031-45361-8_16#Sec12
https://doi.org/10.1007/978-3-031-45361-8_16#Sec13
https://doi.org/10.1007/978-3-031-45361-8_16#Sec13
https://doi.org/10.1007/978-3-031-45361-8_16#Sec13
https://doi.org/10.1007/978-3-031-45361-8_16#Sec14
https://doi.org/10.1007/978-3-031-45361-8_16#Sec14
https://doi.org/10.1007/978-3-031-45361-8_16#Sec14
https://doi.org/10.1007/978-3-031-45361-8_16#Sec15
https://doi.org/10.1007/978-3-031-45361-8_16#Sec15
https://doi.org/10.1007/978-3-031-45361-8_16#Sec15
https://doi.org/10.1007/978-3-031-45361-8_16#Sec16
https://doi.org/10.1007/978-3-031-45361-8_16#Sec16
https://doi.org/10.1007/978-3-031-45361-8_16#Sec16
https://doi.org/10.1007/978-3-031-45361-8_16#Sec17
https://doi.org/10.1007/978-3-031-45361-8_16#Sec17
https://doi.org/10.1007/978-3-031-45361-8_16#Sec17
https://doi.org/10.1007/978-3-031-45361-8_16#Sec18
https://doi.org/10.1007/978-3-031-45361-8_16#Sec18
https://doi.org/10.1007/978-3-031-45361-8_16#Sec18
https://doi.org/10.1007/978-3-031-45361-8_16#Sec19
https://doi.org/10.1007/978-3-031-45361-8_16#Sec19
https://doi.org/10.1007/978-3-031-45361-8_16#Sec19
https://doi.org/10.1007/978-3-031-45361-8_17
https://doi.org/10.1007/978-3-031-45361-8_17
https://doi.org/10.1007/978-3-031-45361-8_17
https://doi.org/10.1007/978-3-031-45361-8_17#Sec1
https://doi.org/10.1007/978-3-031-45361-8_17#Sec1
https://doi.org/10.1007/978-3-031-45361-8_17#Sec1
https://doi.org/10.1007/978-3-031-45361-8_17#Sec2
https://doi.org/10.1007/978-3-031-45361-8_17#Sec2
https://doi.org/10.1007/978-3-031-45361-8_17#Sec2
https://doi.org/10.1007/978-3-031-45361-8_17#Sec3
https://doi.org/10.1007/978-3-031-45361-8_17#Sec3
https://doi.org/10.1007/978-3-031-45361-8_17#Sec3
https://doi.org/10.1007/978-3-031-45361-8_17#Sec4
https://doi.org/10.1007/978-3-031-45361-8_17#Sec4
https://doi.org/10.1007/978-3-031-45361-8_17#Sec4
https://doi.org/10.1007/978-3-031-45361-8_17#Sec5
https://doi.org/10.1007/978-3-031-45361-8_17#Sec5
https://doi.org/10.1007/978-3-031-45361-8_17#Sec5
https://doi.org/10.1007/978-3-031-45361-8_17#Sec8
https://doi.org/10.1007/978-3-031-45361-8_17#Sec8
https://doi.org/10.1007/978-3-031-45361-8_17#Sec8

Chapter 1 ®)
Representation of Numbers and Characters e
in Computer

1.1 Number Bases

Number base is a positive integer, and a number with base N can contain digits less
than N.

1.1.1 Decimal Numbers

If base equals to 10, then all the digits forming a number should be less than or equal
to 9. The numbers under base 10 are called decimal numbers.

Example 1.1 We can write a few decimal numbers as
456 99988 67890 45433

In fact, in our daily life we use decimal numbers.

1.1.2 Binary Numbers

If the base equals 2, then the numbers are called binary numbers, and binary numbers
can be formed using the digits O and 1.

Example 1.2 We can write a few binary numbers as

1011 10111101 101101010 11111111

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 1
O. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45361-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-45361-8_1#DOI

2 1 Representation of Numbers and Characters in Computer
1.1.3 Octal Numbers

If the base equals 8, then the numbers formed under this base are called octal
numbers, and an octal number can be formed using the digits

Example 1.3 We can write a few octal numbers as

76403 22334 54634

1.1.4 Hexadecimal Numbers

If the base equals 16, then the numbers formed under this base are called hexadec-
imal numbers, and a hexadecimal number can be formed using the digits

o 1, 2, 3, 4, 5 6, 7, 8 9 A, B, C, D, E F
where the letters A, B, C, D, E, and F denote the numbers

10, 11, 12, 13, 14, 15.

Example 1.4 We can write a few hexadecimal numbers as
AB04 FFOA 456FEA09

We can use Ox or 0X prefix in front of the hexadecimal numbers. The hexadec-
imal number in the example can be written either as

0xAB04 O0xFFOA 0x456FEA09
or as
0XAB04 OXFFOA 0X456FEA09

but usually small x, that is, 0x, is preferred.

1.2 Conversion Between Bases 3
1.2 Conversion Between Bases

Assume that we have a number under a base. The equivalent of this number in
another base can be calculated. This procedure is called conversion between bases.

1.2.1 Binary to Decimal Conversion

The n-bit binary number
b,_1b,_>...b1by
can be converted to decimal as

by 12" by 02" 4 b2) 4 by2°

Example 1.5 The decimal equivalent of
10110
can be calculated as
284+ 0x27 + 1x22 4 1x2' +0x2°
which is equal to

22

1.2.2 Binary to Octal Conversion

To convert a binary number to octal, starting from the rightmost position we first
divide the binary string into groups having 3 bits, and then convert each 3 bits to an
octal number.

Example 1.6 Convert the binary number
1010001101011

to a number in octal base.

4 1 Representation of Numbers and Characters in Computer

Solution 1.6 Starting from the rightmost position, we first divide the binary string
into groups having 3 bits as

1010001101011

where the leftmost bit can be left padded by zeros to make a group of 3 bits as
001010001 101011

and we convert each group to an octal number as in

001 010 001 101 011
Y YY

Thus, the equivalent octal number is

12153

1.2.3 Binary to Hexadecimal Conversion

To convert a binary number to octal, starting from the rightmost position, we first
divide the binary string into groups each having 4 bits, and then convert each 4 bits
to a hexadecimal number.

Example 1.7 Convert the binary number
11010001101011

to a number in hexadecimal base.

Solution 1.7 Starting from the rightmost position, we first divide the binary string
into groups having 3 bits as

1101000110 1011
where the left most bit can be left padded by zeros to make a group of 3 bits as

0011010001101011

_V_J_v_/_,,_/_,,_/

and we convert each group to a hexadecimal number as in

1.2 Conversion Between Bases 5

001101000110 1011
N e e~
3 4 6 B

Thus, the equivalent hexadecimal number is

346B

1.2.4 Decimal to Binary Conversion

A decimal number can be converted to a binary number using successive division
operation. In this method, the decimal number is divided by 2 and the remainder is
recorded, the dividend is again divided by 2 and the remainder is recorded. This
procedure is repeated with dividends until no more division operation can be
achieved.

Example 1.8 Convert the decimal number 351 to binary.

Solution 1.8 We divide 351 by 2 and remainder equals 1 and dividend equals 350.
We indicate this division operation as on the right-hand side of Fig. 1.1.
If we continue division operation in a successive manner, we obtain Fig. 1.2.
Finally, we collect the binary numbers from bottom to top as depicted in Fig. 1.3
and obtain

101011111
Exercise Find the decimal equivalent of the binary number

101011111

Fig. 1.1 Decimal to binary 351| 2 35111
. —_—
conversion for Example 1.8 350[175 175

1

Fig. 1.2 Successive 351
division for Example 1.8 175
87
43
21
10

O O P RPRE

6 1 Representation of Numbers and Characters in Computer

N
?

Fig. 1.3 Bits are collected 351
from bottom to top 175
87
43
21
10

OHORKRRRR

1.2.5 Octal to Binary Conversion

To convert an octal number to binary, we first convert each octal digit to a binary
string each having 3 bits, then concatenate all the bits and obtain the binary
equivalent of the octal number.

Example 1.9 Convert the octal number 763015 to binary.

Solution 1.9 We first express each octal digit by 3 bits as shown in

7 6 3 0 1 5
R R N N S
111 110 011 000 001 101

and we concatenate the bits and obtain the binary equivalent number as
111 110 011 000 001 101
where removing spaces we get

111110011000001101

1.2.6 Hexadecimal to Binary Conversion

To convert a hexadecimal number to binary, we first convert each hexadecimal digit
to a binary string each having 4 bits, and concatenating all the bits we obtain the
binary equivalent of the hexadecimal number.

Example 1.10 Convert the hexadecimal number Ox1AF395 to binary.

Solution 1.10 We first express each hexadecimal digit by 4 bits as shown in

1 A F 3 9 5
g e N e N
0001 1010 1111 0011 1001 0101

then we concatenate the bits and obtain the binary equivalent number as

1.2 Conversion Between Bases

0001 1010 1111 0011 1001 0101
where removing spaces, we get

000110101111001110010101

1.2.7 Hexadecimal to Decimal Conversion

The n-digit hexadecimal number
hy_1hy_o...hhy
is converted to decimal as

By 116"~ £ hy 216" 72 4+ .+ hy 16" + hyl16°

Example 1.11 The decimal equivalent of

OxFF
can be calculated as

15x 16" +15x 16°
which is equal to
255

Example 1.12 The decimal equivalent of

O0xFFF
can be calculated as

15%16° + 15x 16" + 15x 16°

which is equal to

4095

8 1 Representation of Numbers and Characters in Computer
1.3 Positive Integers

Positive integers are also called unsigned integers, and in computer positive integers
are represented by their binary equivalents.

Example 1.13 The positive hexadecimal number OxFF equals to the decimal
number 255, which is represented in computer by 1111 1111.

1.4 Two’s Complement Form

To find the 2’s complement of a binary string, that is, binary number, we start from
the rightmost position and proceed to the left until we meet the first 1, and after
meeting the first 1, we go on proceeding to the left but we flip each bit to its
complement form, that is, 1 is converted to 0, and 0 is converted to 1.

Example 1.14 Find the 2’s complement of
10101110001000

Solution 1.14 We start from the rightmost bit and proceed to the left until we meet
the first 1 as shown in Fig. 1.4.

Next, we go on proceeding to the left and take the complement of each bit as
shown in Fig. 1.5.

and the 2’s complement form is obtained as

01010001111000

where removing the spaces, we obtain

01010001111000
Fig. 1.4 Location of the —
first <17 i
10101110001000
Fig. 1.5 Take the —

complement of each bit after v i
first “1” ,10101110001000

1.4 Two’s Complement Form 9

Fig. 1.6 Location of first i
1 11111111

Fig. 1.7 Complemented

M
ones 11111111
€

0000000

Example 1.15 Find the 2’s complement of
11111111

Solution 1.15 We start from the rightmost bit and proceed to the left until we meet
the first 1; however, for this string, the first 1 is at the first position as shown in
Fig. 1.6.

Next, we go on proceeding to the left and take the complement of each bit as
shown in Fig. 1.7.

and the 2’s complement form is obtained as

00000001

where removing the spaces, we obtain

00000001
Example 1.16 2’s complement of
11111111
is
00000001
What is the 2’s complement of
00000001

Solution 1.16 2’s complement of
00000001

is

10 1 Representation of Numbers and Characters in Computer

11111111
Hence, we can write that

If d is the 2's complement of a, i.e., d = 2's comp(a)

then 2's complement of d is a, i.e., a = 2's comp(d)

1.5 Negative Integers

Assume that a is a positive integer, in computer the positive integer a is represented
by a binary string that is obtained by converting a into binary. That is,

a is represented by d, which is obtained by converting a into binary

Negative integers in digital devices are represented in 2’s complement form.
That is,

If a is represented by d, then —a is represented by 2’s complement of d.

Example 1.17 How are the numbers 17 and -17 represented in computer? Use 8 bits
for the representation.

Solution 1.17 Using 8 bits, we can write the binary equivalent of 17 as
00010001
Then, in computer the string
00010001

represents the number 17.
If the string 00010001 represents 17, then —17 is represented by

2's complement of 00010001
which is
11101111
Thus, in computer
the string 00010001 represents 17

and

1.6 Registers 11

the string 11101111 represents — 17

In 2’s complement form, the most significant bit is always 1.

Example 1.18 The string 11111111 represents a negative integer in computer.
What is the decimal equivalent of the number?

Solution 1.18 Negative integers are represented by 2’s complement of the binary
representation of its opposite sign integer, that is, positive integer. We know that

If d =2's complement of a, then a=2's complement of d.

To find the value of negative integer, we first take the 2’s complement of the
binary string, which represents the negative integer, then convert the result to
decimal and put a negative sign in front of it; accordingly, 2°s complement of

11111111
is
00000001
and the decimal equivalent of this string is 1; then we can say that the string

11111111

represents —1.

Example 1.19 The string 11111001 represents a negative integer in computer.
What is the decimal equivalent of the number?

Solution 1.19 Decimal equivalent of the negative integer can be calculated as
—2's comp(11111001) - —00000111 — —7

Thus, the string 11111001 represents —7 in computer.

1.6 Registers

Registers are memory-building blocks of memory units. A register is capable of
holding a number of bits. A register is usually called by number of cells it contains.
Each cell can hold only 1-bit information.

12 1 Representation of Numbers and Characters in Computer

Fig. 1.8 A typical memory Address Content
unit with 16-bit register 0x000000000065FE18| 0x78
addresses 0x000000000065FE19| 0x56

0x000000000065FE1A| 0x34
0x000000000065FE1B| 0x12
0x000000000065FE1C] 0x94
0x000000000065FE1D| OxEF
0x000000000065FE1E| 0xCD
0x000000000065FE1F| 0xAB

Example 1.20 An 8-bit register contains 8§ cells and can hold 8 bits of information.

1.7 Memory Units

A memory is composed of a number of registers, and each register has an address.
Address values of the registers are kept in another set of registers. Register addresses
are usually expressed using hexadecimal numbers. In Fig. 1.8, a memory unit is
depicted.

1.8 How Are the Integers Stored in Computer Memory,
Big-Endian, and Little-Endian?

Numbers are stored in registers. Each register has an address. There are two types of
data storage methods: little-endian and big-endian. In the little-endian method, the
least significant byte is written to the memory first, whereas, in the big-endian
method, the most significant byte is written to the memory first. In Fig. 1.9, little-
endian and big-endian methods are explained.

In this book, we will use little-endian method in our examples.

Problems
1. Convert the following decimal numbers to binary:

456 255 89 567 123
2. Convert the following binary number to decimal, octal, and hexadecimal:
10101011110011110011

3. Convert the hexadecimal number 0xA467B to decimal.

1.8 How Are the Integers Stored in Computer Memory, Big-Endian, and Little-Endian? 13

int a = 0x1245A78F

Little-Endian Big-Endian
Address Content Address Content
0x000000000065FE14| 0x8F 0x000000000065FE14| 0x12
0x000000000065FE15| 0xA7 0x000000000065FE15| 0x45
0x000000000065FE16| 0x45 0x000000000065FE16| 0xA7
0x000000000065FE17| 0x12 0x000000000065FE17| (0x8F

Fig. 1.9 Little-endian and big-endian memory storage

4. Find the representation of the following positive numbers in computer; use 16 bits
for representation:

255 1024 4096 30000

5. Find the representation of the following negative numbers in computer; use
16 bits for representation:

—255 -1 — 32768 — 4095 — 154

6. The following strings represent some negative integers in computer; find the
decimal equivalents of these integers:

1100111100000111 1011111100111111 11001100

7. How is the hexadecimal number 0 x ABCDE789AAS56 stored in memory
according to little-endian and big-endian conventions?

®

Check for
updates

Chapter 2
Data Types and Operators

2.1 How to Start Writing a C Program?

To write a C program, we should first form the main function of the program. For this
purpose, we first write the word “int” as in Code 2.1.

int Code
2.1

Then, next to “int” we write “main(void)” as in Code 2.2.

int main(void) Code
2.2

We add curly brackets as in Code 2.3.

int main(void) Code
{ 2.3

}

The statement “return 0;* is written before the closing curly bracket. Note that
there is a semicolon after “return 0.”

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 15
O. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45361-8_2&domain=pdf
https://doi.org/10.1007/978-3-031-45361-8_2#DOI

16 2 Data Types and Operators

int main(void) Code
{ 2.4

return 0;

Semicolon can also be written after “},” but it is not required.

int main(void) Code
{ 2.5

return 0;

}s

The C program lines called statements are written in the main function of the
program, and we get the template of the main function as in Code 2.6.

int main(void) Code
{ 2.6
// statements

return 0O;

A return value of 0 indicates the successful completion of the program, while any
other value indicates an error.

The template can be simplified. The word “void” in “main” can be omitted as in
Code 2.7.

int main() Code
{ 2.7
// statements

return 0;

We can also omit return 0; statement as in Code 2.8.

int main() Code
{ 2.8
// statements

}

Even we can omit “int” word before main, and we get Code 2.9.

2.3 The First C Program 17

main () Code
{ 2.9
// statements

}

In this case, the compiler issues a warning, but it does not have any operational
effect.
We can also use void before main word as in Code 2.10.

void main () Code
{ 2.10
// statements

}

2.2 Comments in C Programming

Single-line comments can be written after // as in Code 2.11.

int main() Code
{ 2.11
// Single line comment

}

Multiline comments can be written between the characters /* and */ as in Code
2.12.

int main() Code
{ 2.12
/* This is a multiple line
comment in C */

// This is a single line comment in C

2.3 The First C Program

C programs usually use built-in library functions, and these functions are included
using header directives as in Code 2.13.

18 2 Data Types and Operators

#include <stdio.h> Code
2.13

int main()
{

// statements

}i

In this program, stdio.h is the name of the header file, the brackets < > indicate
the library directory where header file exists, and the sign # is used to write the
directives.

Our first C program is shown in Code 2.14.

#include <stdio.h> Code
2.14

int main()
{

printf("Hello World.");
}i

where printf() function is used to display the string on console. The output of the
program is “Hello World.”

Example 2.1 The printf() function is used twice in Code 2.15.

#include <stdio.h> Code
2.15

int main()
{
printf ("Hello World.");
printf ("How are You.");
}i

Output(s) Hello World.How are You.

Example 2.2 To print the next sentence to a new line, we can use new line character
\n as in Code 2.16.

#include <stdio.h> Code
2.16

int main()
{
printf("Hello World.\n");
printf ("How are You.");
}s

2.4 Variables and Data Types 19

Output(s)
Hello World.
How are You.

The new line character \n can be used at any place inside a sentence as in Code
2.17.

#include <stdio.h> Code
2.17

int main(void)
{
printf("Hello \n World.\n");
printf("How \n are You.");
};

Output(s)
Hello
World.
How

are you

2.4 Variables and Data Types

A variable, as its name implies, can take a variety of values. But these values belong
to a single data type. For instance, if x is an integer, then x can have many different
integer values, but it cannot have a fractional value.

A variable is declared as

dataType variable name;

Primary data types are
char—38-bit signed numbers
int—32-bit signed integers
float—32-bit signed single-precision fractional real numbers
double—32-bit signed double-precision fractional real numbers

The variables belonging to the same data type can be defined on the same line

dataType variable_ namel, variable_name2;

20 2 Data Types and Operators

Different data types should be separated by a semicolon as in Code 2.18.

#include <stdio.h> Code
2.18

int main(void)

{
char chl= , ch2;

int numl, num2=14; double num3, numd= ;

To print the values of a variable to the screen, we use the printf() function; the
general use of the printf() function is

printf ("$format", variable name) ;
To print more than one variable value to the screen, we use the format
printf ("%formatl Sformat2 ", variable namel, variable name2) ;
To print the character variables, that is, char, to the screen, we use
printf("%c", variable_name) ;
To print the integer variables, that is, int, to the screen, we use
printf ("%d", variable_name) ;

where d indicates decimal.

Example 2.3 We define two variables, one of them is a character with value A, and
the other is an integer with value 25, and we print both values using printf() function
in Code 2.19.

#include <stdio.h> Code
2.19

int main(void)

{
char ch= ;
int num=25;

printf("Letter is %c \n", ch);

printf ("Number is %d \n", num);

2.5 Binary Number Representation in Modern C 21

The code can be written using a single printf() function as in Code 2.20.

#include <stdio.h> Code
2.20

int main(void)

{
char ch= ;
int num=25;

printf("Letter is %c\nNumber is %d \n ", ch, num);

Output(s)
Letter is A
Number is 25

The 8-bit data type char can take integer values between —128 and +127.

Example 2.4 The tilde symbol ~ has the ASCII value 126. Tilde symbol and its
ASCII value can be printed as in Code 2.21.

#include <stdio.h> Code
2.21

int main(void)
{
char ch= ;

printf("Letter representation is %c ", ch);

printf ("\nNumber value is %d ", ch);

Output(s)
Letter representation is ~
Number value is 126

2.5 Binary Number Representation in Modern C

Binary numbers can be expressed using Ob or 0B prefix.

Example 2.5 Code 2.21 can also be written using binary number representation as
in Code 2.22.

22 2 Data Types and Operators

#include <stdio.h> Code
2.22

int main(void) {

char ch= ;
printf("Letter representation is %c ", ch);
printf ("\nNumber value is %d ", ch);

Output(s)
Letter representation is ~
Number value is 126

Example 2.6 The numbers outside the range —128. ..127 can be assigned to a char
variable. In this case, the assigned number is converted to binary and only the least
8 bits are used for the variable. In Code 2.23, this concept is illustrated.

#include <stdio.h> Code
2.23

int main(void)

{

char chl= ;
char ch2= 01111110; // the least significant 8 bits are taken
char ch3= ; // its binary representation is

printf ("Letter representations are %c %c %c", chl, ch2, ch3);

printf ("\nNumber values are %d %d %d", chl, ch2, ch3);

Output(s)
Letter representations are ~ ~ ~
Number values are 126 126 126

In embedded hardware programming, binary assignment is preferred to the char
variables to see the contents of the registers clearly.
2.6 sizeof Operator in C

The sizeof operator can be used to get the number of bytes occupied by a data type in
C programming. The data type char holds 1-byte size in memory.

2.7 Unsigned Char Data Type

Example 2.7
#include <stdio.h> Code
2.24
int main(void)
{
char ch=-100;
printf("Size of char is %d ", sizeof(char));
printf("\nSize of ch is %d ", sizeof(ch));
}
Output(s)

Size of char is 1
Size of ch is 1

Example

2.8

23

#include

{
/] =
char
char
char
char

<stdio.h>

int main(void)

100 is repsesented by 10011100 in 2s complement form
chl=0b10011100;
ch2=0/! (10011100; // the least significant 8 bits are taken

ch3=! ; // its binary representation is 11001110011100
chd=-);

printf("%d %d %d %d", sizeof(chl), sizeof(ch2), sizeof(ch3), sizeof(ch4));

Code
2.25

Output(s) 1111

2.7 Unsigned Char Data Type

Variables using unsigned char data type can have 8-bit non-negative integer values.
The minimum value of unsigned char is

00000000

which equals decimal 0, and the maximum value of unsigned char is

11111111

and when this number is converted to integer, we get

24 2 Data Types and Operators

281
2—1

20424 4 27= —255

Hence, a variable of unsigned char data type can take values in the range

[0...255]

Example 2.9 In Code 2.26, the maximum value of unsigned char data type is
printed in decimal, hexadecimal, and octal forms.

#include <stdio.h> Code
#include <limits.h> 2.26

int main()

{
unsigned char uc_max = UCHAR MAX; // = OxFF;

printf ("Maximum unsigned char: %u (decimal),", uc_max);
printf (" %#o (octal), %#x (hex)\n", uc_max, uc_max, uc_max);

Output(s) Maximum unsigned char: 255 (decimal), 0377 (octal), Oxff (hex)

Example 2.10 What happens if the negative number —100 is assigned to an
unsigned char variable?

Solution 2.10 In computer, negative numbers are represented in 2’s complement
form. The number —100 is represented in 2’s complement form using 8 bits as

10011011
If we type

unsigned char num = -100

then the 2°s complement representation of —100 will be assigned to variable num,
that is,we will have

num = 0B10011011

and the binary string is assumed to represent a non-negative number, and when this
number is converted to integer, we get

20421 423 424+ 275156

Hence, num has decimal value 156.

2.8 Left and Right Shift Operators in C 25

finclude <stdio.h> Code
#include <limits.h> 2.27

int main()

{
unsigned char num=-100;
printf ("Number is: %u", num);

Output(s) Number is: 156

2.8 Left and Right Shift Operators in C

The left shift and right shift operators are << and >>. In left shift operations, the bits are shifted
to the left and new locations are filled with zeros. On the other hand, for the right shift operation,
the bits are shifted to the right and new positions are filled with 0 if the number is a positive
number, or the new positions are filled with 1 if the number is a negative number.

That is, in the right shift operation, all the bits are shifted to the right and the new
positions are filled with the sign bit.

Example 2.11 This example illustrates the left shift operation.

Code

#include <stdio.h>
2.28

int main()
{ // a = 5(00000101), b = 9(00001001), ¢ = 255(11111111)

unsigned char a = 5, b = 9, c=255;

unsigned char d= a << 2; //d = 00010100 --> decimal 20
unsigned char e= b << 3; //e 01001000 --> decimal 72
unsigned char f= ¢ << 2; //f = 11111100 --> decimal 252

printf("d is %Su", d);

printf("\ne is %u", e);
printf("\nf is %u", £);
}
Output(s)
dis 20
eis 72

fis 252

26 2 Data Types and Operators

Example 2.12 This example illustrates the right shift operation.

finclude <stdio.h> Code
2.29
int main()
{
signed char a = -5; // binary representation is 11111011
signed char b= a > 3; //b= 11111111 --> decimal -1

printf("a is %d, ", a);
printf("a >> 3 is %d", b);

Output(s) ais —5,a>>3is —1

2.9 Integer Data Type

Integer variables can take values of whole number that have no fractional parts. An
integer variable is defined as

int var_name;
The integer values can be displayed using the format specifier
%i or %d

The size of the integer data can be determined using the sizeof operator. The
return type of the sizeof operator is long unsigned; for this reason, we use %lu in
printf() function to display the return value of the sizeof operator.

Example 2.13

#include <stdio.h> Code
2.30

int main(void)
{

int num;

printf ("%1lu", sizeof (num)) ;

2.9 Integer Data Type 27

Output(s) 4

In my computer, the integer size is 4 bytes. This means that an integer is
represented by 4 x 8 = 32 bits.

Signed representation is used for integer data type. This means that for positive
numbers the most significant bit is 0, and for negative numbers the most significant
bit is 1, and for negative numbers 2’s complement representation is used.

The largest whole number that can be represented by 32-bit integer data type is

Oolfr11111111e11111111e11111111
and when this number is converted to decimal, we get

0, Al 3 27-1

which can be considered as 2 billion to keep in the mind.
The smallest negative number is

10000000000000000000000000000000

which is in 2°s complement form. To find the decimal equivalent of this number, we
take its 2’s complement, convert it to decimal, and put a — sign in front of it. The 2’s
complement of this number equals itself. Then, the smallest negative number is

—2%% = —2.147.483.648
Thus, a variable of 32-bit integer data type can take values in the range
[—2.147.483.648 ... 2.147.483.647]

If an integer value outside this range is assigned to an integer variable, the least
significant 32 bits are taken into account from the binary representation of the value,
and the rest is truncated.

If you forget how to calculate the maximum and minimum integer values, keep in
mind that they can be displayed using INT_MIN and INT_MAX constant parame-
ters, or you can consider hexadecimal values of the maximum and minimum values;
the minimum value in hexadecimal is

0 x 80000000
and the maximum value in hexadecimal is

0 x 7FFFFFFF

28 2 Data Types and Operators

Example 2.14
#include <stdio.h> Code
#include <limits.h> 2.31

int main(void)
{

printf ("Minimum integer value is %d ",INT_MIN) ;

printf ("\nMaximum integer value is %d ",INT MAX);

Output(s)
Minimum integer value is —2147483648
Maximum integer value is 2147483647

2.10 Hexadecimal and Octal Numbers

Consider the decimal number 15. The binary representation of this number in C
language is

0B1111 or Oblll1
Octal representation is
017
and hexadecimal representation can be one of these

OXF OxF Oxf OXf 0XOF OxOF 0x0f O0XOf

Example 2.15
#include <stdio.h> Code
2.32
int main(void)
{
int numl= ; // this is a 4-bit number, F indicates 1111 in binary,
int num2=15; // decimal assigment
int num3= ; // binary assigment
int numd= ; // octal assigment

printf ("Numbers are %d %d %d %d ",numl, num2, num3, numd4);

2.11 How Are Integers Stored in Computer Memory? 29

Output(s) Numbers are 15 15 15 15
The integer numbers can be displayed in hexadecimal format using the format

"

printf (" %x ..%X .., L)

where capital X is used to display hexadecimal numbers using capital letters

Example 2.16
#include <stdio.h> Code
2.33
int main(void)
{
int numl= ; // this is a 4-bit number, F indicates 1111 in binary,
int num2=15; // decimal assigment
int num3= ; // binary assigment
int numd= ; // octal assigment

"

printf ("Numbers are %X %x %X %x ",numl, num2, num3, numd);

Output(s) Numbers are F f F {

2.11 How Are Integers Stored in Computer Memory?

Refer to Chap. 1 for little-endian and big-endian storage explanations. In this book,
we will use little-endian method in our examples.

The address of an integer variable can be obtained using the & symbol in front of
the variable name, that is, as

&variable name

Example 2.17 Consider the 32-bit integer 0x12345678. When this value is
assigned to an integer variable, the address of the stored register can be displayed
using Code 2.34.

int main(void) Code
{ 2.34
int num= ;

o)

printf ("Adress is %X ", &num) ;

https://doi.org/10.1007/978-3-031-45361-8_1

30 2 Data Types and Operators

Table 2.1 Memory locations A qdress Content
28FEDC 78
28FEDD 56
28FEDE 34
28FEDF 12

In my computer, the output is 28FEDC, and this is the address of the least
significant byte, that is, at this location we have the number 0x78. The address
28FEDC is the address of the top register of the memory block, and the address
values increase downward as shown in Table 2.1

This means that the 32-bit integer is stored in the memory as shown in Table 2.1.

2.11.1 Short Integer Data Type

Short integers are defined either as
short int variable_ name;
or as
short variable name;

The short integer values can be displayed using the format

%hi or %hd

Short integers are 16-bit integers, that is, 2-byte integers. They are used to
represent positive and negative whole numbers. For negative numbers, 2°s comple-
ment representation is used.

The maximum number that can be represented by short integer data type is

OI11111111111111
and when this number is converted to decimal, we get

215 _

1
S —32767

204224 42 =

and the smallest negative number that can be represented by short integer is

2.12 Why Do We Have Both Integer and Short Integer Data Types? 31

1000000000000000
and this number corresponds to the negative number
—2P = —32768
Thus, a variable of short integer data type can take values in the range
[—32768...32767]
If a number outside this range is assigned to a short integer variable, in this case,
only the least significant 16 bits are taken into account and the rest is truncated.

Minimum and maximum short integer values are defined as SHRT_MIN and
SHRT_MAX.

Example 2.18
#include <stdio.h> Code
#include <limits.h> 2.35

int main(void)
{
printf ("Minimum short integer value is %hd ",SHRT_MIN) ;

printf("\nMaximum short integer value is %hd ",SHRT MAX);

Output(s)
Minimum short integer value is —32768
Maximum short integer value is 32767

2.12 Why Do We Have Both Integer and Short Integer Data
Types?

C language is very widely used in embedded programming. The code written by C
language is converted to assembly code and hardware is programmed by the
assembly code. If we are dealing with small integer numbers and use integer data
type for the variables, this wastes memory use. Each integer value consumes 4-byte
memory locations. If all the 4-byte memory locations are NOT used, it is a waste of
memory.

32 2 Data Types and Operators
2.13 Long Integer and Long-Long Integer Data Types

Long integers are defined either as
long int variable name;
or as
long variable name;
The long integer values can be displayed using the format
%1li or %1d

Long integers are assumed to be 64-bit integers, that is, 8-byte integers. However,
depending on the computer, long integers can be 32-bit integers. In this case, there is
no difference between an integer and long integer data type.

Long-long integers are defined either as

long long int variable name;
or as
long long variable name;

The long-long integer values can be displayed using the format

%$1li or %11d

Example 2.19
#include <stdio.h> Code
#include <limits.h> 2.36

int main(void)

{
printf("Size of short integer is %1lu " ,sizeof (short));
printf("\nSize of integer is %lu ",sizeof(int));

printf("\nSize of long integer is %lu ",sizeof(long));

printf("\nSize of long-long integer is %lu ",sizeof(long long));

2.13 Long Integer and Long-Long Integer Data Types 33

For my computer, the outputs are

Size of short integer is 2
Size of integer is 4

Size of long integer is 4

Size of long-long integer is 8

In my computer, long-long integers are 64-bit integers. The minimum and
maximum numbers that can be represented by long-long integers are

—29 and 29 —1

Example 2.20
#include <stdio.h> Code
#include <limits.h> 2.37

int main(void)

{

short numl= ; // 2 bytes in my computer

int num2= ; // 4 bytes in my computer

long num3= ; // 4 bytes in my computer

long long numéd= ; // 8 bytes in my computer

printf ("Short integer is %x ", numl);

printf ("\nInteger is %x ", num2);

printf ("\nLong integer is %x ", num3);
printf ("\nLong-long integer is %11x ", numd);
}
Output(s)

Short integer is 1234

Integer is 12345678

Long integer is 12345678

Long-long integer is 1234567890ABCDEF

Note that the format %x prints in hexadecimal without prefix 0x, whereas the
format %f#x prints in hexadecimal with prefix 0x.

34 2 Data Types and Operators
2.14 Unsigned Integer Data Type

Unsigned integers data types are used for non-negative numbers, that is, the numbers
greater than or equal to zero. Variables for unsigned integer data types can be
declared as

unsigned int variable name; or unsigned variable name
unsigned short variable name; unsigned long variable_name;
unsigned long long variable_ name;
The size of unsigned int and unsigned long int variables is 4 bytes, and the size
of unsigned short variables is 2 bytes. However, these number may change on some
computers.

The unsigned short data types are 16-bit numbers. The smallest number that can
be represented by unsigned data type is

0000000000000000

which equals decimal number 0. And the maximum unsigned short integer number
is

1111111 111111111
and when this number is converted to decimal, we obtain

216 _

1
S 65535

20424 42 =

Thus, a variable of unsigned short int data type can take values in the range
[0...65535]

In a similar manner, we can calculate the range of number that can be represented
by unsigned int data type as

[0...2% —1] > [0...4.294.967.295]

which is also the range for unsigned long int data type for my computer. For
unsigned long long int data type, the range is

[0...2% —1] > [0...18.446.744.073.709.551.615]

To display the unsigned integer data types, we use the format

2.14 Unsigned Integer Data Type 35

%hu $u %1lu %$11lu
for unsigned short, unsigned int, unsigned long int, and unsigned long long

int data types.
For hexadecimal displays, we use the format

$hx $x $1lx $1lx

and for $hx , we can also use %$x format.

Example 2.21
#include <stdio.h> Code
#include <limits.h> 2.38

int main(void)
{
unsigned short int numl=0x1234; // 2 bytes
unsigned int num2=0x127 // 4 bytes
unsigned long int num3=0x 678; // 4 bytes
unsigned long long int numd=0 57890ABCDEF; // 8 bytes

printf ("Unsigned short number is %$x ", numl);
printf("\nUnsigned integer number is %$x ", num2);

printf ("\nUnsigned long integer number is %x ", num3);

printf ("\nUnsigned long-long integer number is %$11X ", numd4);

Output(s)

Unsigned short number is 1234

Unsigned integer number is 12345678

Unsigned long integer number is 12345678

Unsigned long-long integer number is 1234567890ABCDEF

Example 2.22
#include <stdio.h> Code
#include <limits.h> 2.39

int main(void)
{
unsigned short int numl=0x1234; // 2 bytes
unsigned int num2=0x1234 // 4 bytes
unsigned long int num3=0x12 678; // 4 bytes
unsigned long long int numd4=0x1234567890ABCDEF; // 8 bytes

printf ("Unsigned short number is %hu ", numl);

printf ("\nUnsigned integer number is %$u ", num2);

printf ("\nUnsigned long integer number is %lu ", num3);
printf("\nUnsigned long-long integer number is %$1lu ", numd);

36 2 Data Types and Operators

Output(s)

Unsigned short number is 4660

Unsigned integer number is 305419896

Unsigned long integer number is 305419896

Unsigned long-long integer number is 1311768467294899695

We can use # symbol to print the base symbol before values

Example 2.23

#include <stdio.h>
#include <limits.h>

int main(void)

{

unsigned short int numl= ; // 2 bytes

unsigned int num2= ; // 4 bytes

unsigned long int num3= ; // 4 bytes

unsigned long long int numéd= ; // 8 bytes
printf ("Unsigned short number is %#hx ", numl);
printf("\nUnsigned integer number is %$#x ", num2);
printf ("\nUnsigned long integer number is %#1x ", num3);

printf ("\nUnsigned long-long integer number is %#11X ",

Code
2.40

num4) ;

Output(s)

Unsigned short number is 0x1234

Unsigned integer number is 0x 12345678

Unsigned long integer number is 0x12345678

Unsigned long-long integer number is 0X1234567890ABCDEF

Example The integer —1 is represented in 2°s complement form in 32-bit registers

as

[rrirrrrrrarereaerereatanatanng

That is, 32 ones in computer represent —1. Its hexadecimal representation is

OxFFFFFFFF

That is, 8 F letters represent —1 in hexadecimal base in 2’s complement form.

2.14 Unsigned Integer Data Type 37

Example 2.24 Find the outputs of Code 2.41.

Code

#include <stdio.h>
2.41

int main/()

{

unsigned int a=-1;

printf("\na is %X", a);
printf("\na is %u", a);
printf("\na is %d", a);

The integer —1, which is represented by 32 ones in 2’s complement form, is
assigned to an unsigned integer variable. The assigned 32 ones are accepted as

representing an unsigned number.
The first statement

printf("\na is %X", a);

prints the hexadecimal number

OxFFFFFFFF

The second statement

printf("\na is %u", a);

prints the decimal equivalent of

OxFFFFFFFF

which is
4294967295
In the last statement

printf("\na is %d", a);

the operator %d just operates on the value of a, and it interprets it as a negative
number since the most significant bit is 1, and %d is used to print integer values. The
output of the last statement is —1 . Thus, the outputs are

38 2 Data Types and Operators

a is OxXFFFFFFFF
a is 4294967295
ais —1

Example 2.25 What are the outputs of Code 2.42?

#include <stdio.h> Code
2.42
int main()
{
unsigned char a=-1;
printf("\na is %x", a);
printf("\na 1is %u", a);
printf("\na 1is %d", a);
}

Unsigned char is 8-bit data type, and —1 is represented by 8 ones in 2’s
complement form

11111111
The first statement
printf("\na is %X", a);

interprets the value as signed 32-bit integer, and the binary representation is
expanded as

00000000000000000000000011111111
and the printf() function prints the hexadecimal number
OxFF
The second statement

printf("\na is %u", a);

interprets the value as 32-bit unsigned integer, and the binary representation is
expanded as

2.15 Floating-Point Number in C 39

00000000000000000000000011111111
and the printf() function prints the decimal number
255
In the last statement,
printf("\na is %d", a);
the operator 2d just operates on the value of a, and it interprets it as a positive
number since the most significant bit is 0, and %4 is used to print integer values. The

output of the last statement is 255 .
Thus, outputs are

a is OxFF
ais 255
ais 255

2.15 Floating-Point Number in C

For real numbers, two data types, float and double, are used in C programming. For
my computer, the size of float is 4 bytes and the size of double is 8 bytes.

2.15.1 IEEE 754 Floating-Point Standard (Single Precision)

The format of the 32-bit floating-point number is

E7EcEsEAESESE\EgF _(F _oF _ 3 F _
S _ErEcESEAERE,E\EoF _(F _oF 3 23

Sign Exponent Fraction

whose value is calculated as
Value = (— 28 + 1) (227~ Exponent in decimal) (1 4 Braction value in decimal)

A 32-bit floating-point data type is called single-precision data type, and a 64-bit
floating-point data type is called double-precision data type.

40 2 Data Types and Operators

For 64-bit floating number, sign has 1 bit, exponent has 11 bits, and fractional part
has 52 bits, and the decimal value of the number is calculated using

Value = (— 2§ + 1) (202 ~Fxponent in- decimal) (4 Eraction value in decimal)

The floating-point binary strings that represent negative numbers have 1 as their
most significant bit.

Example Calculate the value of the 32-bit floating-point number

1 01111110 11111111111111111111001
Solution Here, the sign bit is 1, which indicates that the string represents a negative
number, and the string is in 2’s complement form. To find the real value of the
number, we first take the 2’s complement of the string

0 10000001 00000000000000000000111

and using the formula

Value = (— 28 + 1) (2127~ Fxponent in decimal) (1 4 Braction value in decimal)

we obtain
Value= — (27" (1+27'+2724+27%) -
Value= —0.25(1 4+ 0.5+ 0.25 + 0.125) —
Value = — 0.46875
Example 2.26
#include <stdio.h> Code

2.43

int main()

{
printf("Size of float is %1lu", sizeof(float));
printf("\nSize of double is %1u", sizeof(double)) ;
printf("\nSize of long double is %$1u", sizeof(long double));

2.16 Keyboard Input Using scanf in C 41

Output(s)
Size of float is 4
Size of double is 8
Size of long double is 12
To display the float, double, and long double variables, we use the format

£33 $1f SLE

with printf() function as

printf (" $f S$1f SLf ", variable f, variable_d, variable 1d);

Example 2.27
finclude <stdio.h> Code
2.44

int main()
{
float numl= ;
double num2= ;
long double num3= ;

oe

printf ("Numbers are S$f 1f $Lf", numl, num2, num3);

Output(s) Numbers are 12.340000 34.670000 34755.679800

2.16 Keyboard Input Using scanf in C

The C function scanf() is used to get input from the user via a keyboard. Its use is

scanf (" %data typel %data type2 ... ", &var_namel, &var namel,...)

where the most frequently used formats are

42
%d for
$1d for
$11d for
su for
$hi for
$hu for
$i for
%o for
%X for
$£f for
$1f for
$SLE for
$c for
$s for

int
long int

long long int

unsigned int
short int

unsigned short int

2 Data Types and Operators

decimal, octal, hexadecimal integers

unsigned octal integers

unsigned hexadecimal integers

float
double

long double

char

strings

Example 2.28 This program inputs two integers from the user and prints them to
the screen.

{

finclude <stdio.h>

int main()

int numl, num2;

printf("Please enter first integer number: ");

scanf ("%d", &numl) ;

printf ("Please enter second integer number: ");

scanf ("%d", &num2) ;

printf ("You en

tered %d and %d",

Code
2.45

numl, num2) ;

2.17 Operators in C Programming 43

Output(s)

Please enter first integer number: 45
Please enter second integer number: 78
You entered 45 and 78

This code can also be written as

#include <stdio.h> Code
2.46

int main()
{

int numl, num2;

printf("Please enter first and second integer numbers: ");
scanf ("%d %d", &numl, &num2) ;

printf("You entered %d and %d", numl, num2);

Output(s)
Please enter first and second integer numbers: 56 78
You entered 56 and 78

2.17 Operators in C Programming

Operators can be classified as binary and unary operators. A binary operator operates
on two parameters, for instance, + is a binary operator, which is used as

xX+y

where x is called left operand, and y is called right operand.
The operators used in C programming can be classified as

Arithmetic operators
Logical operators
Relational operators
Assignment operators
Cast operators

2.17.1 Arithmetic Operators

Arithmetic operators are used to perform mathematical operations, and these oper-
ators and their functions can be outlined as

44 2 Data Types and Operators

+ addition

- subtraction
* multiplication
/ division

% remainder

Example 2.29 Write a C program that gets two real numbers from the user and
displays the sum of these two numbers.

#include <stdio.h> Code
2.47

int main()
{
float numl, num2, result;

printf("Please enter the first real number: ");
scanf ("%f", &numl) ;

printf("Please enter the second real number: ");
scanf ("%f", &num2) ;

result=numl+num2;
printf("Sum of the numbers is: $f", result);
// or we can write printf ("Sum of the numbers is: $£f", numl+num2);

Output(s)

Please enter the first real number: 12.7
Please enter the second real number: 87.16
Sum of the numbers is: 99.86

Example 2.30 Write a C program that gets two real numbers from the user and
displays the subtraction, multiplication, and division results of these two numbers.

#include <stdio.h> Code
2.48

int main()
{
float numl, num2, result;

printf("Please enter the first real number: ");
scanf ("%f", &numl) ;

printf("Please enter the second real number: ");
scanf ("%f", &num2) ;

printf ("Results are: S$f st $f", numl-num2, numl/num2, numl*num2) ;

2.17 Operators in C Programming 45

Output(s)

Please enter the first real number:
Please enter the second real number:
Sum of the numbers is:

2.17.1.1 Division of Integer Numbers

If two integers are involved in a division operation, then the result is also an integer;
otherwise, if one of the operands is a real number, then the result is also a real
number. For example,

7 7 7.0
~ 3 — 3.5 —— 3.5
27 20 2 7
Example 2.31
#include <stdio.h> Code
2.49
int main()
{
int a=7, b=2;
float ec= , d= ;
printf ("Results are: %d $f $f", a/b, a/d, c/b);
}

Output(s) Resultsare: 3 3.5 3.5

2.17.1.2 Multiplication of Integer Numbers

If two integers are involved in a multiplication operation, then the result is also an
integer; otherwise, if one of the operands is a real number, then the result is a real
number.

Example 2.32

#include <stdio.h> Code
2.50

int main ()
{

int a=7, b=2;

float e= , d= ;

oe
(o}
oe
ey

printf ("Results are: $f", a*b, a*d, c*b);

46 2 Data Types and Operators

Output(s) Results are: 14 14.0 14.0

2.17.2 Remainder Operator %

The remainder or modulus operator is used to find the remaining number after the
division of two integers.

Example 2.33
#include <stdio.h> Code
2.51
int main()
{
int a=14, b=3;
printf ("Remainder is: %d", a%b);
}
Output(s)
Remainder is: 2
The sign of the remainder for
a%b
is the same as the sign of a.
Example 2.34
#include <stdio.h> Code

2.52

int main()

{

int a=14, b=3;

printf ("Remainders are: %d %d %d %d", a%b, a%-b, -a%b, -a%-b);

Output(s) Remainders are 22 —2 —2

2.17 Operators in C Programming 47
2.17.3 Augmented Assignment Operators

The augmented assignment operators used in C programming are

and

a+=b equals a=a+b
a-=b equals a=a-b
a*=b equals a=a*b
a/=b equals a=a/b

a%=b equals a=a%b

Example 2.35

#include <stdio.h> Code
2.53

int main()

{
int a=14, b=3;
printf("a, b are %d %d", a, b);

a+=b;
printf ("\nafter a+=b, a is %d ", a);

Output(s)
a,bare 14 3
after a+=b, ais 17

2.17.4 Logical Operators

Boolean Data Type
The header file <stdbool.h> contains the definition of bool data type. It must be
included in the C program to use the Boolean data type.

48

Example 2.36

2 Data Types and Operators

#include <stdio.h>
#include <stdbool.h>

int main()

{
bool a = true;
bool b = false;
printf("True is
printf("\nFalse is
}

5d",

zd", b);

a);

Code
2.54

Output(s)
Trueis : 1
False is : 0

There is no format specifier for bool data type for printf() function. We can use

printf("%s",

to display true and false words for Boolean value.

Example 2.37

x ?"true":"false");

#include <stdio.h>
#include <stdbool.h>

int main()
{

bool a = true;

if (a
{

true)

printf("True");

}

else

{

printf("False");

}

Code
2.55

2.17 Operators in C Programming 49

Output(s) True
The Boolean equivalent of nonzero numbers is true or 1, and the only false value
is the zero number.

Example 2.38

#include <stdbool.h> Code
2.56

int main(void)
{
int a
int b
int ¢

printf("a, b, and c are %d %d %d", (bool) (a), (bool) (b), (bool) (c));

Output(s) a,b,andcare 110
The logical operators can be listed as

&& logical AND operator
Il logical OR operator
! unary complement operator

When logical operators are operated on operands, each operand is converted to its
Boolean equivalent value and the results are calculated according to
For AND operation

true && true — true
true && false — false
false && false — false

For OR operation

true |l true — true
true |l false — true
false |l false — false

For complement operation

true — false
'false — true

50 2 Data Types and Operators

Example 2.39
#include <stdio.h> Code
#include <stdbool.h> 2.57

int main(void)

{

int a = ;
int b = ;
int e = 0;
bool rl = a && b;
bool r2 = a && c;

printf ("AND results are %d, %d", rl, r2);

Output(s) AND results are 1, 0

In Code 2.57, the variables a and b have nonzero values and each of them are
evaluated as true, and the result of the AND operation for a and b is true. The
variable ¢ has zero value, and it is evaluated as false. The result of the AND
operation for a and c is zero.

2.17.5 Bitwise Operators in C

Bitwise operators are completely different operators than the logical operators we
covered in the previous section.

Bitwise operators are very frequently used by the embedded software engineers.
They are used in hardware programming, such as in microprocessor, and chip
programming.

The bitwise operators are

Bitwise AND: &
It operates on 2 bits, and the result is 1 if both bits are 1.
Bitwise OR: |
It operates on 2 bits, and the result is 1 if one of the bits is 1.
Bitwise XOR: *
It operates on 2 bits, and the result is 1 if bits are different from each other.
Bitwise left shift: <<

It has two operands, the bits of the first operand are left shifted, and the second
operand decides the number of places to shift.

2.17 Operators in C Programming 51

Bitwise right shift: >>

It has two operands, the bits of the first operand are right shifted, and the second
operand decides the number of places to shift.

Bitwise complement: ~

It takes one number and inverts all bits of it. Example 2.40 Let us define the
variables a and b as

unsigned char a = 5, b = 9, c;

Since unsigned char data type uses 8 bits, the binary representations of these
variables are

Now consider

The corresponding bits of a and b at the same positions are ANDed; the result is
assigned to c. The binary value of ¢ happens to be

c =
whose decimal value is 1.
#include <stdio.h> Code
2.58
int main()
{
unsigned char a = 5, b = 9, c;
printf("a = %d, b = %d\n", a, b);
c=aé&b;

printf("c = %d\n", c¢);

Output(s)
a=5b=9
c=1

52 2 Data Types and Operators
Example 2.41 Again let us define the variables a and b as
unsigned char a = 5, b =9, c;

Since unsigned char data type uses 8 bits, the binary representations of these
variables are

Now consider

The corresponding bits of a and b at the same positions are ORed; the result is
assigned to c.
Using

the binary value of c is calculated as

c = 1101
whose decimal value is 13.
Example 2.42
#include <stdio.h> Code
2.59
int main()
{
unsigned char a = 5, b = 9, ¢;
printf("a = %d, b = %d\n", a, b);
c=al|b;
printf("c = %d\n", c);
}
Output(s)
a=5b=9

c=13

2.17 Operators in C Programming 53

Example 2.43 Let us define the variables a and b as
char a = -6, b =9, ¢;

The 8-bit representation of —6 in 2’s complement form is 11111010. Char data
type uses 8 bits signed representation. The binary representations of the variables are

a
b =

Now consider

The corresponding bits of a and b at the same positions are ORed; the result is
assigned to c. The binary value of ¢ happens to be

which represents a negative number in 2’s complement form. The decimal value of
this number is

Using Code 2.60, we get the same results.

finclude <stdio.h> Code
2.60

int main()
{
char a = -6, b=9, ¢c;
printf("a = %d, b = %d\n", a, b);

c=alb;

printf("c = %d\n", ¢);

Output(s)
a=-6,b=9
c=-5

54 2 Data Types and Operators
Example 2.44 Let us define the variable a as
char a = -6;

The 8-bit representation of —6 in 2’s complement form is 11111010.
What is displayed with

printf("a = su", a);

?

Answer

The negative number —6 is represented by 8-bit string 11111010.
In the statement,

printf("a = %u", a);

The format %u interprets the value as integer, and numbers are represented by
32 bits in integer data type. Then, —6 is represented by a 32-bit string

ITTTTITITIIII1I 111111111111 11111010

and the format %u considers this string as an unsigned number, that is, positive
number, and its decimal equivalent is printed by

printf("a = Su", a);
The decimal equivalent of

ITTTTTIT T irti1r 11111010
can be calculated as
2420 4 42 42!
which is
4294967290

Code 2.61 gives the same result.

2.17 Operators in C Programming

#include <stdio.h> Code
2.61
int main()
{
char a = -6;
printf("a = %u\n", a);
}
Output(s) a = 4294967290
Example 2.45
#include <stdio.h> Code
2.62
int main()
{
char a = ;
char b = ;
// a”b = 0000110001
printf("a XOR b is %c\n", a*b);
printf("a XOR b is %d", a”b);
}
Output(s)
aXORbis:s

aXORbis: 115

Bitwise left shift: <<
The bitwise left shift operator is used as

a << b;

55

where a is the first operand whose bits are shifted to the left by b times, and b is the

second operand.

56 2 Data Types and Operators

Example 2.46
#include <stdio.h> Code
2.63
int main ()
{
char a = ;
char b= a << 2;
printf("a is : %d\n", a);
printf("b is : %d", b):;
}
Output(s)
ais: —127
bis: 4

The variable a has binary value 10000001 whose most significant bit is 1, and it
indicates a negative number in 2’s complement form. The decimal value of this value
is

—2’s complement (10000001) — — 01111111 — — 127

When char b= a << 2 is performed, the bits of a are shifted to the left by two
places and b happens to be

00000100

whose decimal value is 4. We get the same results using Code 2.63. Now we modify
Code 2.63 and obtain Code 2.64.

#include <stdio.h> Code
2.64

int main ()
{
char a = ;

printf("a is: %d\n", a);

printf("a << 2 is: %d", a << 2);

Output(s)
ais: —127
a<<is:—508

2.17 Operators in C Programming 57

In the statement
printf("a << 2 is: %d", a << 2);
the value a << 2 is accepted as a 32-bit integer. It is not truncated to 8 bits as in the
previous example, and shifting operation is performed on 32 bits. The value of a is
written using 32 bits as
I11111111111111111111111 10000001
and when this string is shifted to the left by two places, we get

111111tr11111111111111 10000001 00

which represents a negative integer in 2’s complement form, and the decimal
equivalent of this integer is —508.

Example 2.47
int main|() Code
{ 2.65
int a= ; // 32-bit integer

printf("a is: %d\n", a);

printf("a << 2 is: %d\n", a << 2);

Output(s)
ais: —2147483645
a<<is:12

The 32-bit integer a has binary value
1000000000000000000000000000001 1

which represents a negative number in 2’s complement form since the most signif-
icant bit is 1. The decimal equivalent of this negative number is calculated as

—O1T111111 111 11111111111111111101 — — 2147483645
When the operation a << 2 is performed, we get
00000000000000000000000000001100

and this string represents a positive number and decimal equivalent of this number
is 12.

58 2 Data Types and Operators

Bitwise right shift: >>
The bitwise right shift operator is used as

a >> b;

where a is the first operand whose bits are shifted to the right by b times, and b is the
second operand.

Example 2.48
#include <stdio.h> Code
2.66
int main()
{
char a = ;
char b= a >> 2;
printf("a is : %d\n", a);
printf("b is : %d", b);
}
Output(s)
ais: —128
bis: —32

The variable a has binary value 10000000 whose most significant bit is 1, and it
indicates a negative number in 2’s complement form. The decimal value of this value
is

—2's complement(10000000) — — 10000000 — — 128

When char b=a >>2 is performed, the bits of a are shifted to the right by two places, and in this
shifting operation the leftmost bit is used for the new positions, and the shifted bit string
happens to be

11100000

which represents a negative number in 2’s complement form, and the decimal
equivalent of this number is

—2's complement(11100000) — — 00100000 — — 32

2.17 Operators in C Programming 59

Example 2.49

#include <stdio.h> Code
2.67

int main()
{
char a = ;

printf("a is: %d\n", a);

printf("a >> 2 is: %d", a >> 2);

Output(s)
ais: —128
a>>2is: —32

In the statement
printf("a >> 2 is: %d", a >> 2);

the value a >> 2 is accepted as a 32-bit integer. It is not truncated to 8 bits as in the
previous example, and shifting operation is performed on 32 bits. The value of a can
be written using 32 bits as

111111111111111111111111 10000000
and when this string is shifted to the right by two places, we get
11t111t11t11t1111111111111 100000

which represents a negative integer in 2’s complement form, and the decimal
equivalent of this integer is —32.

Bitwise complement: ~
The bitwise complement operator is a unary operator. When bitwise operator is
applied on a bit of string, then all the 1’s become 0’s and vice versa.

For instance,

~ 00000111 — 1111 1000

60 2 Data Types and Operators

Example 2.50

#include <stdio.h> Code
2.68

int main()

{

int num = 4;

printf("Bitwise complement of %d is %d", num, ~num);

Output(s) Bitwise complement of 4 is —5.
The 32-bit representation of the integer 4 is

00000000000000000000000000000100
and the complement of this string is
11111111111111111111111111111011

which represents a number in 2’s complement form, and the number represented by
this string is

—2’scomp(11111111111111111111111111111011)
which is

— 00000000000000000000000000000101 — —5

2.17.6 Increment and Decrement Operators

The prefix increment and decrement operators are used as
++variable_name --variable name
The postfix increment and decrement operators are used as

variable_name++ variable_ name--

2.17 Operators in C Programming
The expression with prefix increment
result = ++var_name;
equals to

var_ name= var_name+ ;

result =var_name;
The expression with postfix increment

result = var_name++;
equals to

result =var_ name;

var name= var name+l!;

Example 2.51 In this example, we use postfix increment.

#include <stdio.h> Code
2.69
int main|()
{
int a = , b;
b = at++;
printf("a = %d, b = % d", a, b);
}
Output(s) a=13,b =12
Example 2.52 In this example, we use prefix increment.
#include <stdio.h> Code
2.70

int main()

{
int a = , b;
b = ++a;

printf("a = %d, b = $ d", a, b);

61

62 2 Data Types and Operators

Output(s) a=13,b=13

Example 2.53 In this example, we use postfix decrement.

#include <stdio.h> Code
2.71

int main()
{
int a = , b;

b =a--;

printf("a = %d, b = % d", a, b);

Output(s) a=11,b =12

Example 2.54 In this example, we use prefix decrement.

#include <stdio.h> Code
2.72
int main()
{
int a = , b;
b = --a;
printf("a = %d, b = $ d", a, b);
}

Output(s) a=11,b =11

2.18 Operator Precedence

The precedence of the operators from highest to lowest is shown in Table 2.2.

Example 2.55

#include <stdio.h> Code
2.73

int main()

{

inta=7,b=5,¢c=-1,d= ;

if (a < b >c<d) // evaluated as (((a < b)> c) < d)
printf ("Result is TRUE.");

else

printf ("Result is FALSE.");

2.18 Operator Precedence 63
Table 2.2 Operator precedence
Precedence | Operator Description Associativity
1 [1 Array subscripting Left-to-right
0 Function call or parentheses
++ , -- Postfix increment and decrement
-> Member access through pointer
Structure and union member access
2 ++ / -- Prefix increment, decrement Right-to-left
+ /- Unary plus, minus
(type) Cast operator
1, ~ Logical NOT and bitwise NOT
* Dereference operator
& Address of operator
sizeof Determine size in bytes
_Alignof | Alignment requirement
3 */% Multiplication, division, and remainder Left-to-right
4 + - Addition and subtraction Left-to-right
5 << >> Bitwise shift left and bitwise shift right Left-to-right
6 <<= Relational operators < and <= Left-to-right
> >= Relational operators > and >=
7 == 1= Relational operators == and != Left-to-right
8 & Bitwise AND Left-to-right
9 ~ Bitwise XOR, i.e., exclusive OR Left-to-right
10 | Bitwise OR or inclusive OR Left-to-right
11 && Logical AND Left-to-right
12 | Logical OR Left-to-right
13 ?: Ternary conditional Right-to-left
14 = Assignment Right-to-left
+= -= Augmented addition and subtraction
*= /= Augmented multiplication and division
%= &= Augmented remainder and
bitwise AND
= |= Augmented bitwise exclusive and inclusive OR
<<= Augmented bitwise shift left and augmented
>>= bitwise shift right
15 P Comma (expression separator) Left-to-right

Output(s) Result is TRUE.

Problems
1. Write a program that declares four variables of type char, int, float, and double,

respectively.

2. Define two variables for float and int data types, initialize them, and print their
values using printf() function.

64

2 Data Types and Operators

3. What is the output of Code 2.74?

#include <stdio.h> Code
2.74

int main(void)
{

char ch = ;

printf("ch = %d ", ch);

4. What is the output of Code 2.75?

#include <stdio.h> Code
2.75

int main(void)
{

char ch = ;

printf("ch = %d", ch);

. Write a program that displays the decimal number —100 in octal and hexadec-

imal formats.

. By drawing explain how are the values in

int num =
stored in memory?

. The binary representation of a short int type number is 1111011100000001.

Write the binary representation of an int type number having the same decimal
value.

. Which format is used in printf() function to display a long long int number?
. What is the size of a long long int data types?
. What are the outputs of Code 2.76?

#include <stdio.h> Code
2.76

int main/()
{

unsigned char a = =-8;

printf("\na is %x", a);
printf("\na is %u", a);
printf ("\na is %d", a);

2.18 Operator Precedence

11. What are the outputs of Code 2.77?

#include <stdio.h>
int main()
{

int a=9, b=2;

float e = 11.0, d = 2.0;

printf ("Results are: %d st sE",

Code
2.77

a/b, a/d, c/b);

12. What are the outputs of Code 2.78?

#include <stdio.h> Code
2.78
int main()
{
unsigned char a = 8, b = , CJ
printf("a = %d, b = %d\n", a, b);
c=alb;
printf("c = %d\n", c);
}
13. What are the outputs of Code 2.79?
#include <stdio.h> Code
2.79
int main()
{
char a = -13, b =18, ¢;
printf("a = %d, b = %d\n", a, b);
c=al|b;

printf("c = %d\n", c);

65

66

14. What are the outputs of Code 2.80?

2 Data Types and Operators

#include <stdio.h>

int main()

{
char a = 0b11000011;
printf("a is: %d\n", a);
printf("a >> 2 is: %d", a >> 2);
}

Code
2.80

15. What are the outputs of Code 2.81?

#include <stdio.h>

int main()

int num = -1;

printf ("Bitwise complement of %d is %d", num, ~num);

Code
2.81

®

Check for
updates

Chapter 3
Type Conversion in C

3.1 Type Conversion Methods

There are two types of conversion in C:

Implicit conversion (automatic)
Explicit conversion (manual)

3.1.1 Implicit Conversion

Implicit conversion is performed automatically by the compiler whenever a value of
one type is assigned to another type. For example, if you assign an integer value to a
character type or vice versa.

Example 3.1 Code 3.1 illustrates integer to float implicit conversion.

#include <stdio.h> Code
3.1

int main ()
{

// Automatic conversion: int to float
float myFloat = ; // 18 is converted to 18.000000

printf ("$f", myFloat);
}

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 67
O. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45361-8_3&domain=pdf
https://doi.org/10.1007/978-3-031-45361-8_3#DOI

68

Output(s) 18.000000

3 Type Conversion in C

Example 3.2 Automatic conversion of float to int is illustrated in this example.

#include <stdio.h>

int main()

{
// Automatic conversion:
int a = ;

printf("%d \n", a);

printf("sd",)

}

Code
3.2

float to int

Output(s)
23
858993459

In the statement

printf ("sd",

);

the 32-bit binary representation of floating-point number 23.45 is accepted
representing an integer, and the binary string is converted to decimal, which equals

8589934509.

Example 3.3 The division result of two integers is also an integer.

#include <stdio.h>

int main ()
{

double a = /

printf ("S1f",

printf£("%1f \n", a);

Code
3.3

’

/2);

Output(s)
3.000000
3.000000

3.1 Type Conversion Methods 69
In the statement
printf£("s1£", 7/2);

the integer division 7/2 results in 3, and this is interpreted as a double result, that is,
implicit conversion is performed inside printf() function.

Example 3.4 Characters have ASCII values.

finclude <stdio.h> Code
3.4

int main()
{
int x = 12; // integer x
char y = ; // y is a character, ASCII value of 'a' is 97

x =x+y; // vy is implicitly converted to integer

printf("x = %d", x);

Output(s) x = 109

Example 3.5 This example illustrates double to integer implicit conversion.

#include<stdio.h> Code
3.5

int main()

{
// a 1s double variable
double a = 6754.38;

printf ("Double number : %$.21f\n", a);

// implicit conversion from double to integer
int b = a;

printf("Integer number : %d", b);

Output(s)
Double number : 6754.38
Integer number: 6754

70

3 Type Conversion in C

Example 3.6 This example illustrates character to integer implicit conversion.

#include<stdio.h>
int main()

{

// character variable
char x = ;

int y = x;

printf ("Integer (ASCII) value

printf ("Character value : %c\n", x);

// assign character value to integer variable

Code
3.6

5d", ¥,

Output(s)
Character value : a
Integer (ASCII) value : 97

Example 3.7

#include <stdio.h>
int main()
{
int a = ;
float s;

s =a + c;

printf("s = %.1f \n", s);

char ¢ = ; /* ASCII value is 107 */

Code
3.7

Output(s) s = 122.0

3.1.2 Explicit Conversion

Explicit conversion is written manually as

(type) expression

3.1 Type Conversion Methods

71

Example 3.8 This example illustrates explicit conversion of integer to float.

#include <stdio.h>

int main()

{

// Explicit conversion of int to float

Code
3.8

float a = (float) / 2;
printf("a = $.1f", a);
}
Output(s) a=3.5
In the statement
float a = (float) / 2;

the integer 7 is converted to float data type, that is, it becomes 7.0, and when this

number is divided by 2, we get 3.5.

Example 3.9
#include <stdio.h> Code
3.9
int main()
{
// Explicit conversion of int to float
float a = (float) / 2;
print£("7/2 = $f\n", 7/2);
printf("a = %$f\n", a);
printf("a = $.1f\n", a);
}
Output(s)
7/2 = 0.000000
a = 3.500000
a=3.5
In the statement
printf£("7/2 = $f\n", 7/2);

the integer division 7/2 results in 3 and the 32-bit binary string representing the
integer 3 is interpreted as representing a floating-point number, and when this string
is converted to a floating-point value, a very small number close to 0 is obtained.

72 3 Type Conversion in C

Example 3.10 This example illustrates explicit conversion of integer to double.

#include <stdio.h> Code
3.10
int main()
{
int a= 5;
int b= 2;
double e= (double) a / b;
printf("c = $.11f", ¢);
}

Output(s) ¢ =2.5

Example 3.11 This example illustrates explicit conversion of float to integer.

#include <stdio.h> Code
3.11
int main()
{
float a = ;
int b = (int)a;
printf("a = $f\n", a);
printf("b = %d\n", b);
}
Output(s)
a = 4.700000
b=4

Example 3.12 This example illustrates explicit conversion of double to integer.

#include<stdio.h> Code
3.12
int main()
{
double a = ;
// Explicit conversion from double to int
int b = (int)a + 1;
printf("b = %d", b);
}

Output(s) b =4

3.2 Information Loss When a Higher-Order Data Is Converted to a Lower-Order Data 73

3.2 Information Loss When a Higher-Order Data Is

Converted to a Lower-Order Data

Data loss may occur when conversion is performed between different data types. In
general, when a higher-order data is converted to a lower-order data as shown in

Fig. 3.1, information loss can occur.

Example 3.13

#include <stdio.h> Code
3.13
int main()
{
int a = 0000000000000000;
short b = a; // b = 0000000000000000
printf("a = %d \n", a);
printf("b = %d \n", b);
}
Output(s)
a= 2147418112
b=0
Fig. 3.1 Information loss H|gher Order Data Type
order P S—
leng double
double
float
Data Loss leng No Data Loss
int
short
char

Lower Order Data Type

74 3 Type Conversion in C

In this code, the integer variable “a” has a 32-bit value, and the decimal equivalent
of this value is 2147418112.
Short integer data type is a 16-bit data type. When the assignment

short b = a;

is performed, only the least significant 16 bits of a is assigned to b, the leftmost
16 bits of b are all 0’s. Then, the decimal equivalent of b is 0.

3.3 Information Loss When Conversion Is Performed
Between Signed and Unsigned Data Types

When unsigned and signed integers are mixed in arithmetic operations, unexpected
results may be obtained.

Example 3.14
#include <stdio.h> Code
3.14
int main()
{
short int a = -8;
unsigned short int b = 4;
unsigned short int e = a+b;
printf("a = $hd \n", a);
printf("b = $hu \n", b);
printf("c = $hu \n", c);
}
Output(s)
a=-8
b=4
¢ = 65532

In the statement

short int a = =-8;

3.3 Information Loss When Conversion Is Performed Between Signed and. . .

the short integer a is represented by 16 bits in 2’s complement as

1111111111111000

When the statement

unsigned short int e = a+b;

75

is performed, the value of the variable a is converted to unsigned short int data type,
that is, the bit string is accepted representing an unsigned short integer, and the
decimal equivalent of the bit string is

IT11111111111000 25 + 2% 4+ .23 565528

and when this number is summed by 4, we obtain 65532.

Problems

1. What are the outputs of Code 3.15?

{

int main()

#include <stdio.h> Code

3.15

char a = ;
unsigned short b = a;

printf("a = %d \n", a);

printf("b = %hu \n", b);

2. What are the outputs of Code 3.16?

{

int main()

#include <stdio.h> Code

3.16

char a = ;
unsigned char b = a;
printf("a = %d \n", a);

printf("b = %d \n", b);

76

3 Type Conversion in C

3. What are the outputs of Code 3.17?

#include <stdio.h> Code
3.17
int main()
{ printf (" n', 9/2);
printf (" n", 9/2);
printf("sf \n", (float)9/2);
printf("sf \n", (float) (9/2));
printf("s.1f \n", (float)9/2);
printf("%.1f \n", (float) (9/2));
}

4. What are the outputs of Code 3.18?

#include

int main(

{

{
}

int cnt
for(short int indx

cnt++;

printf("cnt

Code
3.18

<stdio.h>

)

’

> 05

indx--)

"
’

cnt) ;

5. What is the output of Code 3.19?

#include <stdio

int main()

{

short int x

char y

a

X x + vy,

printf("x =

Code
3.19

.h>

= 655307,

// integer x

T .
’

// character y, ASCII value of 'a' is 97

// y is implicitly converted to short integer

dam, x);

®

Check for
updates

Chapter 4
Structures

4.1 Introduction

The C structures are used to group a number of variables employing different data
types, and the group is seen as a single data type.

Syntax
The syntax of the structure declaration is

struct structureName
{
dataTypel varl;
dataType2 var2;

}i

Note that there is a semicolon at the end of structure declaration.

Example 4.1 This example shows how to create a structure data type having two
members.

#include <stdio.h> Code
4.1

int main()
{
struct myStruct
{
int x;
double y;
}i

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 77
O. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45361-8_4&domain=pdf
https://doi.org/10.1007/978-3-031-45361-8_4#DOI

78

Fig. 4.1 Defining a
structure object, that is,
variable

#include <stdio.h>

int main ()
{
struct myStruct
{
int x;
double y;
}i

struct myStruct

4 Structures

Two of them
represents a
new data type

Variable name

~

s/

Example 4.2 We can create a variable, that is, object, using the structure we defined
in the previous example as in Code 4.2.

#include <stdio.h> Code
4.2

int main()

{
struct myStruct

{
int x;
double y;
}i

struct myStruct s;

In Fig. 4.1, we explain how to define a variable, that is, object, for a structure data

type.

4.2 Initialization of Structure Elements

The initialization of structure elements can be performed either as

struct structureName str;

str.variableNamel valuel;
str.variableName2 value2;
str.variableName3 = value3;

4.3 Initialization Using Designated Initializer List 79

or as

struct structureName str = {valuel, value2, value3,...};

Example 4.3 This example illustrates how to initialize the structure elements.

#include <stdio.h> Code
4.3

int main()

{
struct myStruct

{

int x;

double y;
}i
struct myStruct s = {4, }:
printf("s.x = %d ", s.X);

printf("s.y = $.11f", s.y);

Output(s) s.x =4sy =34

4.3 Initialization Using Designated Initializer List

We can initialize the members of the structure using explicit initialization method
called designated initializer list method.

Syntax

struct structureName str = \

{.varNamel = valuel, .varName2 = value2, .varNameN = valueN};

80

4 Structures

Example 4.4 This example illustrates designated initializer list approach.

#include <stdio.h>

int main()
{
struct myStruct
{
int x;
double y;
}i

struct myStruct s = {.x=4,

oo

printf("s.x
printf("s.y =

oe

d ", s.x);
J11ET, s.y)

y=

Code
4.4

Y

Output(s) sx =4sy =34

Example 4.5 This is another example of structure initialization.

#include <stdio.h>

int main()

{
struct myStruct

{
int x;
double y;
}i

struct myStruct

Code
4.5

4.3 Initialization Using Designated Initializer List

81

Fig. 4.2 Alternative way struct myStruct struct myStruct
for variable definition for { {
structures int x; int x;
double y; double y;
b= ; }
————— Variables can be
————— written here
Variables can be ;
written here
Example 4.6 A structure can contain arrays as elements.
#include <stdio.h> Code
4.6
int main ()
{
struct myStruct
{
int x;
double y;
char z[20];
}i
struct myStruct s = {4, "Hello"};
printf("s.z = %s", s.z);
}

It is possible to define the variables as shown in Fig. 4.2.

Example 4.7 This example illustrates defining structure variables using the method

in Fig. 4.2.

#include <stdio.h>

int main ()

{
struct myStruct
{
int x;
double y;

} a, b, c;

Code
4.7

82

4 Structures

Example 4.8 We can initialize the variables of the previous example. First, we open

a vertical space as in Code 4.8.

#include <stdio.h>

int main()
{
struct myStruct
{
int x;
double y;
}

Code
4.8

// open a vertical space here

Next, we write the variable names as in Code 4.9.

#include <stdio.h> Code
4.9
int main()
{
struct myStruct
{
int x;
double y;
}
a, // write the variable names
bl
c;
}

In the third step, the variables are initialized as in Code 4.10.

#include <stdio.h>

int main()
{
struct myStruct
{
int x;
double y;

oo —
inn

3.4

—_—
]

e
~ 0~

Q
[]

Code

4.10

4.4 Typedef for Structures 83

In Code 4.11, the values of structure variables are printed.

#include <stdio.h> Code
4.11

int main()

{
struct myStruct

{
int x;
double y;

$.1f \n", a.x, a.y);

I
o\
Q.
)

<

I

printf("a.x

printf("b.x $d b.y = %.1f \n", b.x, b.y);

$.1f", c.x, c.y);

I
S0
Q.
Q

<

I

printf("c.x

Output(s)

ax=4ay=34
bx=6by=78
cx=9cy=25

4.4 Typedef for Structures

Structure variables can be defined using less words with the help of typedef
reserved word.
Assume that a represents a data type. A variable is defined for this data type as
avar_name;
Typedef is used as
typedef a b;
where a is a data type and its new name is b. Then,

avar_name; and b var_name;

are the same thing.
We define a variable for a structure as in

struct myStruct s;

84 4 Structures
where —~struct myStruct- ig the data type. We can use typedef for struct as

typedef struct myStruct mySt;
e i

a

then we can define a variable for structure as

mySt s;

Example 4.9 In this example, we use typedef to define a structure variable.

#include <stdio.h> Code
4.12

int main()

{
typedef struct myStruct mySt;

struct myStruct
{

int x;
double y;
}i

mySt s;

Example 4.10 Structure objects, that is, variables, can be initialized when they are
defined with typedef utility.

#include <stdio.h> Code
4.13

int main()

{
typedef struct myStruct mySt;

struct myStruct
{

int x;
double y;
}i

mySt s = {4, }i

printf("s.x = %d s.y = $.1f \n", s.x, s.y);

Output(s) s.x =4s.y =06.7

4.4 Typedef for Structures

Example 4.11 Structures can be used to define global variables as well.

#include <stdio.h> Code
4.14

typedef struct myStruct mySt;

struct myStruct
{

int x;
double y;
}i

mySt s = {4, 6.7}; // this is a global variable

int main()

{
printf("s.x = %d s.y = %.1f \n", s.x, s.y);

}

Output(s) s.x =4s.y=6.7

4.4.1 Alternative Use of typedef for Structures

Typedef can also be used as

typedef struct{ } nameForStructure;

Example 4.12 Structure name is shown in red in Code 4.15.

#include <stdio.h> Code
4.15

int main()
{
typedef struct

{
int x;
double y;
} mySt;
mySt s = {4, 6.7};

printf("s.x = %d s.y = $.1f \n", s.x, s.y);

Output(s) s.x =4sy=06.7

86 4 Structures

4.5 Nested Structures

It is possible to define a structure inside another one.

Example 4.13 Let us form a nested structure; for this purpose, first, let us define a
structure as in Code 4.16.

#include <stdio.h> Code
4.16

int main()

{
struct myStructl
{

int x;

Now, we can define another structure and its variable as the member of mySructl
as in Code 4.17.

#include <stdio.h> Code
4.17

int main()

{
struct myStructl

{

int x;

struct myStruct2

{
int y;
double z;

} s2;
};

Finally, we can initialize the structure elements as in Code 4.18.

4.5 Nested Structures 87

#include <stdio.h> Code
4.18

int main|()

{
struct myStructl
{

int x;

struct myStruct2
{

int y;

double z;

} s2;
};

struct myStructl sl;
sl.x = ©
sl.s2.y
sl.s2.z

printf("x = %d y = %d z = %.11f", sl.x, sl.s2.y, sl.s2.z);

Output(s) x=5y=6z=34

Example 4.14 In this example, we use one structure as data type in another
structure.

#include <stdio.h> Code
4.19

int main()

{ struct myStruct2
: int y; double z;
;éruct myStructl
{

int x;

struct myStruct2 s2;
};
struct myStructl sl;
sl.x = 5;
sl.s2.y = 6;

sl.s2.z = 3.4;

printf("x = %d y = %d z = %.11f", sl.x, sl.s2.y, sl.s2.z);

Output(s) x=5y=6z=34

88 4 Structures

4.6 Structure Copying

Objects or variables belonging to the same structure type can be copied to each other.

Example 4.15 Simple assignment can be used to copy one structure variable to
another one.

#include <stdio.h> Code
4.20

int main()
{
struct myStruct

{

int x;
double y;
}i
struct myStruct sl = {4, Y

struct myStruct s2;
s2=sl;

printf("s2.x = %d s2.y = %.11f", s2.x, s2.y);

In this example, sl and s2 are both variables of the same structure.
Output(s) s2.x =4 s2.y = 8.7

Structure Pointers
We can define pointers to structures as

struct sructureName* sptr;

Example 4.16 In this example, we explain pointers to structures. First, let us create
a structure and initialize a structure as in Code 4.21.

#include <stdio.h> Code
4.21

int main()

{
struct myStruct

{
int x;
double y;
};

struct myStruct s = {4,

}i

4.7 Structures with Self-Referential 89

We can define a pointer to the structure variable and access to the elements of
structure using — as in Code 4.22.

Code

#include <stdio.h>
4.22

int main()

{

struct myStruct

{
int x;
double y;
};
struct myStruct s = {4, }i

struct myStruct* sptr = &s;

printf("s.x = %d s.y = $.11f", sptr->x, sptr->y);

Output(s) s.x =4s.y =38.7

4.7 Structures with Self-Referential

The syntax of a self-referral structure is

struct structureName

dataTypel varl;
dataTypel var2;

struct structureName* sptr;

90

4 Structures

Example 4.17 Let us define a self-referential structure as in Code 4.23.

#include <stdio.h>

int main()
{
struct node
{
int x;
double y;

};
}

struct node* next;

Code
4.23

We can introduce two structure variables and initialize them as in Code 4.24.

#include <stdio.h>

int main|()
{
struct node
{
int x;
double y;
struct node* next;

}s

struct node nl
struct node n2

}

Code
4.24

The address of the second structure variable is assigned to the pointer of the first

structure variable as in Code 4.25.

#include <stdio.h>

int main()
{
struct node
{
int x;
double y;
struct node* next;

}i

struct node nl
struct node n2

’ , NULL};

nl.next = &n2;

printf("n2.x = %d n2.y = %.11€f",

nl.next->x,

nl.next->y) ;

Code
4.25

Output(s) n2.x =5n2.y =6.7

4.8 Bit Fields 91
4.8 Bit Fields

Bit fields are used to prevent the waste usage of the memory. We use sufficient
number of bits for the variables in a structure.
The syntax for the use of bit fields is

struct structureName

{
dataTypel varNamel: bit-widthl;
dataType2 varName2: bit-width3;

};
Example 4.18 First, let us define two structures:

#include <stdio.h> Code
4.26
struct myStructl
{
int a;
char c;

};

struct myStruct2
{
int a : ;
char c¢;

};

The structure variables can be initialized as in Code 4.27.

#include <stdio.h> Code
4.27

struct myStructl
{

int a;
char c¢;

};

struct myStruct2
{

int a : ;
char ¢;

};

int main()

1]
—_—
~
-
~

struct myStructl sl
struct myStruct2 s2
printf ("Size of sl is : %lu \n",sizeof(sl))

printf ("Size of s2 is : %1lu",sizeof(s2));

92 4 Structures

Output(s)
Size of s1is: 8
Size of s2is : 4

It is obvious from the outputs that the second structure objects use less memory,
thus better memory use is achieved.

4.9 Structures as Function Arguments

Structures are data types; the structure variables can be used in function arguments.

Example 4.19 In Code 4.28, we define a structure and introduce the prototype of a
function.

#include <stdio.h> Code
4.28
struct myStruct
{
int x;
double y;

};

void disp(struct myStruct s);

The implementation of the function and passing of structure variable as function
argument is shown in Code 4.29.

#include <stdio.h> Code
4.29

struct myStruct
{
int x;
double y;
}i

void disp(struct myStruct s);

int main(void)
{
struct myStruct s = {12, }i

disp(s) ;
}
void disp(struct myStruct s)
{
printf("s.x = %d s.y = $.1f \n", s.x, s.y);
}

Output(s) s.x =12sy =159

4.10 Structure Padding and Packing in C Programming

93

Example 4.20 In the previous example, the structure is a global data type; it is seen
by every unit of the program. In this example, we define structure inside the main

function. Function argument cannot identify the defined data type.

Code
4.30

#include <stdio.h>
void disp(struct myStruct s);
int main(void)
{
struct myStruct
{
int x;
double y;
};
struct myStruct s = {12, };
disp(s);
}
void disp(struct myStruct s)
{
printf("s.x = %d s.y = %.1f \n", s.x, s.y);
}

Output(s) error: type of formal parameter 1 is incomplete, disp(s) .

4.10 Structure Padding and Packing in C Programming

The structure shown in Code 4.31 contains two variables belonging to char and int

data types.
Code
struct myStruct 4.31
{
char x;
int y;

};

In Code 4.32, we calculate the size of a structure variable:

94 4 Structures

#include <stdio.h> Code
4.32

int main(void)
{
struct myStruct
{
char x;
int y;
}i

printf("Size of myStruct is : %$lu\", sizeof (struct myStruct));

The output of the Code-4.32 is “Size of myStruct is : 8”
If we look at the inside of the structure in Code 4.32, we see that a char and an int
variable are used. We expect the size of the structure to be

sizeof (char) + sizeof (int)=1+4 — 5

however, we got the output 8. The reason for this output is that different data types
cannot be stored in memory in a consecutive manner. Padding is used between
storage regions of different data types in memory.

To use memory for the storage of the structures efficiently, we use pragma
directive pack as shown in Code 4.33. Although the use of pack pragma results in
efficient memory use, it decreases the performance of the system due to longer
memory access time.

#include <stdio.h> Code
4.33

#pragma pack (1)

int main(void)
{

struct myStruct

{
char x;
int y;
}i

printf (, sizeof(struct myStruct));

When Code 4.33 is executed, we get:
The size of myStruct is : 5

4.11 Unions

Unions are very similar to structures, but the size of the union equals to the size of
one of its members, and this member has the largest size considering all the members
of the union. Definitions and member access rules of the unions are similar to the
structures with some differences. Only the first member of the union can be initial-
ized. One storage location is shared by all the members. The value of the last
modified element of the union is shared by all the other members.

4.11 Unions 95

Example 4.21
#include <stdio.h> Code
4.34

int main(void)
{
struct myStruct

{
char a;
int b;
}i
union myUnion
{
char a;
int b;
}i

printf ("The size of myStruct is

printf ("The size of myUnion is

%lu \n", sizeof (struct myStruct));

$1u", sizeof (union myUnion)) ;

Output(s)

The size of myStruct is : 8
The size of myUnion is : 4

Example 4.22 If initialization is performed for more than one member, only the first

one is initialized.

%d", u.a, u.b, u.b);

#include <stdio.h>
int main(void)
{
union myUnion
{
char a;
int b;
}i
union myUnion u =
printf ("%c %c
}

Code
4.35

Output(s) x x 120

96

4 Structures

Example 4.23 One memory location is shared by all the members of the union.

#include <stdio.h> Code
4.36

int main(void)
{

union myUnion

{
char a;
int b;
}:
union myUnion u;

u.a = ;

printf ("%c %c %d", u.a, u.b, u.b);

Output(s) x x 120

Example 4.24 ASCII values can be used for characters.

#include <stdio.h> Code
4.37

int main(void)
{

union myUnion

{
char a;
int b;
}i
union myUnion u;

u.b = ;

printf("%c %d %d", u.a, u.a, u.b);

Output(s) x 120 120

Problems

1.

2.

Write a structure that has two integers, one float, and one char variable as
structure elements. Declare two variables of this structure and initialize them.
Repeat the previous problem but use the keyword typedef while declaring the
structure.

. Write a structure called student_card. The structure has variables called

st_Number, st_Name, which are used for student number and student name. In

4.11 Unions

97

the main part of the program, declare an array of student_card with size 3. Ask the
user to enter the values of the each structure element and get them using scanf()

function and initialize the structure elements.

4. Declare a structure called complex_number; this structure has two elements
called real and imaginary. Write functions that get two complex_number structure
variables and find the summation and multiplication of the variables considering
the summation and multiplication of classical complex numbers and return the
result. Write a test program to initialize the structure elements and test the

functions.
5. The person structure is declared in Code 4.38.

{
int age;
char* name;
char* address;
}person;

typedef struct personData

Code
4.38

Write a test program where variables for this structure are defied and initial-
ized. The members of structure elements are displayed using element access rules.

6. What is missing in Code 4.39?

#include <stdio.h>

struct student

{
int ID;
char name[40];
}i
int main()
{
struct student

}

Code
4.39

®

Check for
updates

Chapter 5
Conditional Statements

5.1 Conditional Structure

The conditional statements are the statements that are executed when the condition is
true. The syntax of the conditional statement containing the word if is

if (condition)

{
// Statements to be executed
// when condition is true

The syntax of the conditional statement containing the words if-else is

if (condition)

{
// Statements to be executed
// when condition is true

// Statements to be executed
// when condition is false

A condition is accepted true if it has a nonzero value or if it is a Boolean
expression with true value.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 99
O. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45361-8_5&domain=pdf
https://doi.org/10.1007/978-3-031-45361-8_5#DOI

100 5 Conditional Statements

Example 5.1 Any integer value different than zero is accepted as true.

#include <stdio.h> Code
5.1
int main()
{
int a = ;
if (a)

{
printf("Inside if part \n");
}

else
{

printf("Inside else part \n");
}

Output(s) Inside if part

Example 5.2 Any float value different than zero is accepted as true.

#include <stdio.h> Code
5.2

int main()

{

float a = ;

if (a)
{
printf("Inside if part \n");
}
else
{
printf("Inside else part \n");

}

5.1 Conditional Structure

Output(s) Inside if part

Example 5.3 Any double value different than zero is accepted as true.

#include <stdio.h> Code
5.3
int main()
{
double a = 0.0001;
if (a)

{
printf("Inside if part \n");
}

else
{

printf("Inside else part \n");
}

Output(s) Inside if part

Example 5.4 A zero value is accepted as false.

{

#include <stdio.h> Code

int main ()

5.4

int b = 0;
if (b)
{

printf("Inside if part \n");
}

else
{

printf("Inside else part \n");
}

101

102 5 Conditional Statements

Output(s) Inside else part

Example 5.5 The header file <stdbool.h> contains Boolean data type.

#include <stdbool.h> Code
#include <stdio.h> 5.5

int main()
{

bool a = true;

if (a)
{

printf("Inside if part \n");
}

else
{

printf("Inside else part \n");
}

Output(s) Inside if part
Example 5.6

#include <stdbool.h> Code
#include <stdio.h> 5.6

int main()
{
bool b = false;

if (b)
{
printf("Inside if part \n");

}
else
{
printf("Inside else part \n");
}

5.1 Conditional Structure

Output(s) Inside else part

103

Example 5.7 Logical comparisons produce Boolean results.

#include <stdio.h>
int main()
{

int a = 5;

if (a < 10)

Code
5.7

{
printf("a < 10 --> %d \n", a < 10);
printf("a is less than 10 \n");
}
else
{
printf("a is greater than 10");
}
}
Output(s)
a<10-->1

a is less than 10

Example 5.8 Equality comparison symbol,

==, can be used in conditional parts.

int main()
{

int a = 14;

{

if (a % 2 ==
{

return 0O;

#include <stdio.h>

if (a % 2 == 0
printf("%d is even number", a);

return O;

printf ("%d is odd number", a);

Code
5.8

Output(s) 14 is even number

104

In Example 5.8, after printf() function, return

return 0 is met, the program terminates.

Example 5.9

5 Conditional Statements

is written. When

#include <stdio.h>
int main()
{

int num = ;

if (num >)

printf("Inside if part");

printf ("Outside if part");

Code
5.9

Output(s) Outside if part

5.2 Conditional Ladder Structure (-If Ladder)

The template for the conditional ladder structure is shown in Code 5.10.

if (condition-1)
{

statements-1 ;

}
else if (condition-2)

{

statements-";

}

else if (condition-3)

{

statements-3;

}

else
{

statements;

}

Code
5.10

5.2 Conditional Ladder Structure (-If Ladder)

105

Example 5.10 This example illustrates the use of the conditional ladder structure.

#include <stdio.h>
int main()
{
int num;
printf ("Please enter an integer

scanf ("%d", &num) ;

if(num > 0)

{
}

else if (num < 0)

{
}
else

{
}

Code
5.11

printf ("You entered a positive integer.");

printf ("You entered a negative integer.");

printf("You entered zero.");

Output(s)
Please enter an integer : —13
You entered a negative integer.

106

5 Conditional Statements

Example 5.11 This example illustrates the use of the conditional ladder structure
with combined conditional expressions.

{

#include <stdio.h>

int main()

int avg_mark = 83;
if (avg_mark <= 1
printf ("A+ Grade");
else if (avg_mark < 90 &&
printf ("A Grade");
else if (avg_mark < 50 &&
printf ("B Grade");
else if (avg _mark < /0 &&
printf ("C Grade");
else if (avg _mark < 60 &&
printf ("D Grade");
else

printf ("F Failed");

&& avg_mark >=

avg_mark

avg_mark

avg_mark

avg_mark

>= 20)
>= 70)
>= 0)
>= 50)

Code
5.12

Output(s) A Grade

5.3 Multiconditional Structures 107

Example 5.12 This example illustrates the use of the combined conditional expres-
sions in the ladder structure.

#include <stdio.h> Code
5.13

int main()
{

int num = 66;
printf("Please enter an integer between 0 and 100 : ");
scanf ("%d", &num) ;

// Check if num is between 0 and 25
if (num >= 0 && num <= 25)
printf("You entered a number between 0 and 25");

// Since entered num is not between 0 and 25
// Check if num is between 26 and 50
else if (num >= 26 && num <= 50)
printf ("You entered a number between 26 and 50");

// Since entered num is not between 26 and 50
// Check if num is between 51 and 75
else if (num >= 51 && num <= 7/5)
printf("You entered a number between 51 and 75");

// Since entered num is not between 51 and 75
// It means num is greater than 75
else
printf ("You entered a number greater than 75");

Output(s)
Please enter an integer between 0 and 100 : 64
You entered a number between 51 and 75

5.3 Multiconditional Structures

Multiple conditions can be checked using the logical AND and OR operators
&& [

The AND operator gives true result if all the conditions are true; on the other
hand, the OR operator gives true if one of the conditions is true.

108 5 Conditional Statements

Example 5.13

#include <stdio.h> Code
5.14

int main()
{
inta=4, b=-1, ¢c=13;
int and_result = (a == 4) && (b < 0) && (c > 10);

printf ("and result = %d", and_result);

Output(s)
and_result = 1

Example 5.14

#include <stdbool.h> Code
#include <stdio.h> 5.15

int main()

{
bool a = true;
bool b = false;
int e = 12;

bool and result = a && ('b) && (¢ > 10);

printf("and result = %d", and_result);

Output(s) and_result = 1

5.3 Multiconditional Structures 109

Example 5.15
#include <stdbool.h> Code
#include <stdio.h> 5.16

int main ()

{

bool a true;
bool b = false;

int ¢ = ;
bool resultl = a & b || (c >)
bool result2 = a || b && (c >),

printf ("resultl %d\n", resultl);

printf ("result2 $d", result2);

Output(s)
resultl =1
result2 = 1

Note that the AND operator has higher precedence than the OR operator.

110 5 Conditional Statements

Example 5.16

#include <stdio.h> Code
5.17

int main()
{

int numl, num2;
printf ("Please enter two integers : \n");
scanf ("%d %d", &numl, &num2) ;

if (numl > 0 && num2 >)
{
printf("You entered two positive integers.");
}
else if (numl < 0 && num2 < 0)
{

printf("You entered one positive and one negative integer.");

else if ((numl > &§& num2 < 0) || (numl < 0 && num2 > 0))
{

printf("You entered one positive and one negative integer.");

else if (numl == && num2==0)
{
printf ("You entered two zeros.");
}
else
{
printf ("One of the numbers is zero.");

}

Output(s)
Please enter two integers : 5 —12
You entered one positive and one negative integer.

5.4 Syntax of Nested If-Else

The syntax of the nested if-else is shown in Code 5.18 where nesting is done in only
if part.

5.4 Syntax of Nested If-Else 111

if (condition-1) Code
{ 5.18
// Executed when condition-1 is true
if (condition-2)
{
// Executed when condition-2 is true
}
else
{
// Executed when condition-2 is false
}
}
else
{
// Executed when condition-1 is false
}

The syntax of the nested if-else where nesting is done both in if part and else part
is shown in Code 5.19.

if (condition-1) Code
{ 5.19
// Executed when condition-1 is true
if (condition-2)

{
// Executed when condition-2 is true
}
else
{
// Executes when condition-2 is false
}
}
else
{

// Executed when condition-1 is false
if (condition-3)

{

// Executed when condition-3 is true
}
else

{

// Executes when condition-3 is false

}

112 5 Conditional Statements

Example 5.17
This example illustrates the use of nested if-else structure.
#include <stdio.h> Code
5.20

int main()

{

int num;
printf("Please enter an integer between 0 and 100 : ");
scanf ("%d", &num) ;

if (num < 50)
{

printf("You entered a number smaller than 50. \n");

if (num < 205)
printf("You entered a number smaller than 25. \n");
else
printf("You entered a number greater than 25. \n");
}
else
{

printf("You entered a number greater than 49. \n");

if (num > 7/5)

printf("You entered a number greater than 75. \n");
else

printf("You entered a number smaller than 75. \n");

Output(s)

Please enter an integer between 0 and 100 : 67
You entered a number greater than 49.

You entered a number smaller than 75.

5.5 Conditional Operator in C
The syntax of the conditional operator is
(a) ? [executed if a is true] : [executed if a is false];

Note that every value other than zero is accepted as true.
The conditional operator can also be used as

variable = condition ? valueT : valueF;

which is equivalent to

5.5 Conditional Operator in C

(condition) ? (variable = valueT)

which means

if (condition)

{

variable =
}
else
{

variable =
}

Example 5.18

(variable =

valueT;

valueF;

valueF) ;

In Code 5.21, the variable “a” has a value of 7, which is accepted as true.

#include <stdio.h>
int main()
{

int a = 7;

int b;

b= (a) ? 6 : 8;

printf("b is : %d"

, b);

Code
5.21

Output(s)
bis: 6

113

Example 5.19 In Code 5.22, the variable “a” has a value of 0, which is accepted as

false.

#include <stdio.h>
int main()
{

int a = 0;

int b;

b= (a) 2 6 : 8;

printf("b is : Sd",

b);

Code
5.22

114

Output(s) bis: 8

5 Conditional Statements

Example 5.20 An alternative form of the conditional operator is illustrated in Code

5.23.

#include <stdio.h>
int main()
{

int a = 5;

int b;

(a) ? (b =06):

printf ("b is

zd", b);

Code
5.23

);

Output(s) bis: 6

Example 5.21
#include <stdio.h>
int main()
{
int a = 0;
int b;
(a) ? (b = 0):
printf("b is
}

zd", b);

Code
5.24

)

Output(s) bis: 8

Example 5.22 Not that parentheses are necessary when conditional operator is used

in the format

(condition) ? (variable = valueT)

(variable = valueF);

5.5 Conditional Operator in C

If parentheses are not used, error arises.

#include <stdio.h>
int main()
{

int a = 0;

int b;

(a) ? b=06: b= 28;

printf("b is

5d", b);

Code
5.25

Output(s)
main.cpp: In function ‘main’:

main.cpp:9:20: error: lvalue required as left operand of assignment

Example 5.23

#include <stdio.h>
int main()
{

int a =8, b=25;

(a > b) ? printf("a > b")

Code
5.26

: printf("a < b");

Output(s) a>b

115

Example 5.24 The code in the previous example can be written as in Code 5.27.

#include <stdio.h> Code
5.27
int main()
{
int a =8, b=5;
(a >Db) ?
printf("a > b")
: printf("a < b");
}

Output(s) a>b

116 5 Conditional Statements

Example 5.25 A second alternative form of the conditional operator is illustrated in
Code 5.28.

#include <stdio.h> Code
5.28

int main()
{

int a =8, b=5;
int larger;
larger = (a > b) ? a : b;

printf("Larger number is : %d", larger);

Output(s) Larger number is : 8

5.6 switch Statement

The syntax of the switch statement is shown in Code 5.29.

switch (variable-name) Code
{ 5.29
case value-1: statements-1;
break;
case value-’: statements-2;
break;

case value-N: statements-N;
break;

default: statements;

In Code 5.30, when the value of the variable matches one of the listed values, the
corresponding statements are executed.

5.6 switch Statement

117

Example 5.26 In this example, an integer is entered by the user and a message is

printed according to the entered value.

#include <stdio.h>

int main()
{

int num;

printf ("Enter an integer between 1 and 4,
"l and 4 are included : \n");

scanf ("%d", &num) ;

switch (num)
{

case 1:
printf("You entered 1.");
break;

case 2:
printf ("You entered 2.");
break;

case

printf("You entered 3.");
break;

default:
printf ("You entered 4.");
break;

Code
5.30

\1’]"

Output(s)

Enter an integer between 1 and 4,
1 and 4 are included : 3

You entered 3

118 5 Conditional Statements

Example 5.27 Between case and break keywords, more than one line can be
written.

#include <stdio.h> Code
5.31
int main|()
{
int num;
printf ("Enter an integer between 1 and 4, \n"
"l and 4 are included : ");
scanf ("3d", &num);
switch (num)
{
case 1:
printf ("You entered 1.\n");
printf ("Thank you.");
break;
case ’:
printf("You entered 2.\n");
printf ("Thank you.");
break;
case 3:
printf ("You entered 3.\n");
printf ("Thank you.");
break;
default:
printf("You entered 4.\n");
printf ("Thank you.");
break;
}
}
Output(s)

Enter an integer between 1 and 4,
1 and 4 are included : 3

You entered 3.

Thank you.

5.6 switch Statement 119

Example 5.28 We can use curly parentheses between case and break keywords.

#include <stdio.h> Code
5.32
int main()
{
int num;
printf ("Enter an integer between 1 and 4, \n"
"l and 4 are included : ");
scanf ("3d", &num);
switch (num)
{
case 1:
{
printf("You entered 1.\n");
printf ("Thank you.");
break;
}
case ’:
{
printf("You entered 2.\n");
printf ("Thank you.");
break;
}
case 3
{
printf ("You entered 3.\n");
printf ("Thank you.");
break;
}
default:
{
printf ("You entered 4.\n");
printf ("Thank you.");
break;
}
}
Output(s)

Enter an integer between 1 and 4,
1 and 4 are included : 3

You entered 3.

Thank you.

120

5 Conditional Statements

Example 5.29 If break of a case is not written, the next line is also executed.

#include <stdio.h> Code
5.33
int main()
{
int num;
printf ("Enter an integer between 1 and 4, \n"
"l and 4 are included : ");
scanf ("%d", &num) ;
switch (num)
{
case 1:
printf("You entered 1.\n");
break;
case 2:
printf("You entered 2.\n");
s =/
case =
printf("You entered 3.\n");
break;
default:
printf("You entered 4.\n");
break;
}
}
Output(s)

Enter an integer between 1 and 4,
1 and 4 are included : 2

You entered 2.

You entered 3.

5.6 switch Statement 121

Example 5.30 If break of a case is not written, the rest of the code is executed until
break keyword is met.

#include <stdio.h> Code
5.34
int main()
{
int num;
printf ("Enter an integer between 1 and 4, \n"
"l and 4 are included : ");
scanf ("%d", &num) ;
switch (num)
{
case 1:
printf("You entered 1.\n");
break;
case 2:
printf("You entered 2.\n");
case
printf("You entered 3.\n");
default:
printf("You entered 4.\n");
break;
}
}
Output(s)

Enter an integer between 1 and 4,
1 and 4 are included : 2

You entered 2.

You entered 3.

You entered 4.

122

5 Conditional Statements

Problems

1.

2.

3.

What is the output of Code 5.35?

#include <stdio.h> Code
5.35
int main()
{
char a = ;
if(a)
{
printf("Inside if part \n");
}
else
{
printf ("Inside else part \n");
}
}

What is the output of Code 5.36?

#include <stdio.h> Code
5.36

int main()
{

char a = ;

if (6 < > =5)
{
printf("Inside if part \n");
}
else
{
printf("Inside else part \n");
}

Which header file do we need to include in our source file to be able to write a
statement like

bool a = true;
9

. Write a C program that inputs an integer from the user and determines whether

the number is even or odd.

. Write a C program that inputs an integer from the user and displays a “1-digit

number” if it is a 1-digit integer; displays a “2-digit number” if it is a 2-digit
integer; and displays a “3-digit number” if it is a 3 digit-integer; otherwise, it
displays “a larger number.”

5.6 switch Statement 123

6. Write a program that inputs an integer from a user and determines whether the
number is a prime number or not.

7. Write a C program that inputs three numbers from the user and determines and
displays the largest of three numbers.

8. Write a C program that inputs five numbers from the user and determines and
displays the largest of five numbers.

9. Write a C program that determines whether a triangle is equilateral, isosceles, or
scalene. Input the side lengths from the user.

10. What is the output of Code 5.37?

#include <stdio.h> Code
5.37

int main()
{
int a = =-3;
int b;
b= (a) ? : ;

printf("b is : %d", b);

11. What is the output of Code 5.38?

#include <stdio.h> Code
5.38

int main()
{ int a = 0;
int b;
(a) ? (b =145): (b =292);

printf("b is : %d", b);

12. Write a program using the switch statement that inputs digits from 1 to 5 and
displays the digit entered by the user.

Chapter 6)
Loop Statements Shex

6.1 The For-Loop

The structure of the for-loop is

for(st0; stl; st2)

{
st3

}

where st0, stl, st2, and st3 are the statements, and they are executed in rowwise as

st0, stl, st2, st3
stl, st2, st3
stl, st2, st3
stl, st2, st3

until the loop terminates.
The formal syntax of the for-loop is

for(initialization statements; loop execution condition; update statements)

{
// Loop statements

}

where at initialization statements, we have variable initialization expressions,
such as

int a = 0;

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 125
O. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45361-8_6&domain=pdf
https://doi.org/10.1007/978-3-031-45361-8_6#DOI

126

6 Loop Statements

loop execution condition is a Boolean expression, for example,

a < 3
update statements are usually increment or decrement statements, for example,
a++ or a--

however, other updates like a=a+2, a*=2 are also possible.

Example 6.1 Let us write a code involving the for-loop. For this purpose, we first
write the for-loop structure as in Code 6.1.

#include <stdio.h>

Code
6.1
int main()
{
for (; ;)
{
}
}
Initialization is written as in Code 6.2.
#include <stdio.h> Code
6.2

int main()
{
for (int a = 0; ;)

{
}

6.1 The For-Loop 127

Conditional expression is added in Code 6.3.

#include <stdio.h> Code
6.3
int main()
{
for (int a = 0; a < 3;)
{
}
}

Finally, update is written in Code 6.4.

#include <stdio.h> Code
6.4
int main()
{
for (int a = 0; a < 3; a++)
{
}
}

Two printf() functions are written in Code 6.5.

#include <stdio.h> Code
6.5
int main()
{
for (int a = 0; a < 3; a++)
{

printf ("Inside for-loop\n\n");
}

printf ("\nOutside for-loop") ;

128 6 Loop Statements

To understand the operation of the for-loops, let us use printf() functions inside
the for header. For this purpose, let us use back slash and obtain three lines as in
Code 6.6.

#include <stdio.h> Code
6.6
int main()
{
for (int a = 0;\
a < 3;\
a++)
{
printf("Inside for-loop\n\n");
}
printf ("\nOutside for-loop");
}

The first printf() function is shown in Code 6.7.

#include <stdio.h> Code
6.7
int main()
{
for (int a = 0 && printf("Initializatin is performed, a = 0 \n");\
a < 3;
at++)
{
printf("Inside for-loop\n\n");
}
printf ("\nOutside for-loop");
}

The second printf() function is used in Code 6.8.

#include <stdio.h> Code
6.8

int main()

{

for (int a = 0 && printf("Initializatin is performed, a = 0 \n");\

printf("a = %d, a < 3 is %s \n",a, a < 2 ? "true" : "false") && a < ;\

a++)

{

printf ("Inside for-loop\n\n");

}

printf ("\nOutside for-loop");
}

6.1 The For-Loop 129

The third printf() function is used in Code 6.9.

#include <stdio.h> Code
6.9

int main()

{

for (int a = && printf("Initializatin is performed, a = 0 \n");\

printf("a = %d, a < 3 is %s \n",a, a < 3 ? "true" : "false") && a < 3;\

printf("a++ --> a is incremented\n") && a++)
{

printf ("Inside for-loop\n\n");

}

printf ("\nOutside for-loop");
}

Output(s) When the program is executed, we get the following output, which
explains the operation of the for-loop:

a=0,a < 3istrue
Inside for-loop

a++ --> a is incremented
a=1,a<3istrue
Inside for-loop

a++ --> a is incremented
a=2,a<3istrue
Inside for-loop

a++ --> a is incremented
a=3,a < 3is false

Outside for-loop

130 6 Loop Statements

Example 6.2 We can write the update part of the for-loop in the body of the for-
loop.

#include <stdio.h> Code
6.10

int main()
{
for (int a = 0; a < 3;)
{
printf("Inside for-loop, a = %d \n",a);
at+;

}

printf ("\nOutside for-loop");

Output(s)

Inside for-loop, a =0
Inside for-loop, a =1
Inside for-loop, a =2

Outside for-loop

Example 6.3 Update can be a decrement operation. In Code 6.11, decrement is
used for update operation.

#include <stdio.h> Code
6.11
int main()
{
for (int a = 2; a > 0; a--)
{
printf("Inside for-loop, a = %d \n",a);
}
printf ("\nOutside for-loop");
}
Output(s)

Inside for-loop, a =2
Inside for-loop, a = 1
Inside for-loop, a =0

Outside for-loop

6.1 The For-Loop

131

Example 6.4 The variable defined at the initialization part of the for-loop is not
accessible outside the body of the for-loop.

{

#include <stdio.h>

int main()

Code
6.12

for (int a = 0; a < 3; a++)

printf("a = %d \n",a);

printf("a = %d \n",a); // a is not accessible, error

Output(s)

[Error] ‘a’ undeclared (first use in this function)

Example 6.5 A local variable outside the for-loop structure can be used for
counting index as in Code 6.13.

#include <stdio.h> Code
6.13
int main()
{
int a;
for (a = 0; a < 3; a++)

{
printf("Inside for-loop, a = %d \n",a);

}

printf ("\nOutside for-loop, a = %d \n",a);

Output(s)

Inside for-loop, a =0
Inside for-loop, a = 1
Inside for-loop, a = 2

Outside for-loop, a = 3

132

6 Loop Statements

Example 6.6 The initialization part of the for-loop can be written outside the for-

loop structure as in Code 6.14.

#include <stdio.h> Code
6.14
int main()
{
int a = 0;
for (; a < 3; a++)
{
printf("Inside for-loop, a = %d \n",a);
}
printf ("\nOutside for-loop");
}
Output(s)

Inside for-loop, a =0
Inside for-loop, a = 1
Inside for-loop, a = 2

Outside for-loop, a = 3

Example 6.7 In Code 6.15, both initialization and update parts of the for-loop are

written outside the for-loop header.

#include <stdio.h> Code
6.15
int main()
{
int a = 0;
for (; a < 3;)
{
printf("Inside for-loop, a = %d \n",a);
at+;
}
printf ("\nOutside for-loop");
}
Output(s)

Inside for-loop, a =0
Inside for-loop, a =1
Inside for-loop, a =2

Outside for-loop, a = 3

6.1 The For-Loop 133

Example 6.8 More than one variable can be used at the header of the for-loop.

#include <stdio.h> Code
6.16
int main()
{
for (int a =0, b=0; a< 3, b< 3; a++, b++)
{
printf("Inside for-loop, a = %d ",a);
printf("b = %d \n",b);
}
printf ("\nOutside for-loop");
}
Output(s)

Inside for-loop,a=0b =10
Inside for-loop,a=1b =1
Inside for-loop,a=2b =2

Outside for-loop

Example 6.9 Conditional part of the for-loop can contain multiconditional
expressions.

#include <stdio.h> Code
6.17

int main()
{ for (int a =0, b=0; a< 3 & b < 3; a++, b++)
{ printf("Inside for-loop, a = %d ",a);
printf("b = %d \n",b);
;rintf("\nOutside for-loop") ;

Output(s)

Inside for-loop,a=0b =10
Inside for-loop,a=1b =1
Inside for-loop,a=2b =2

Outside for-loop

134

6 Loop Statements

Example 6.10 The logical operator && produces false, if one of the operands

evaluates to be false.

#include <stdio.h>

int main()
{ for (int a =0, b =0; a <
{ printf ("Inside for-loop, a =
printf("b = %d \n",b);
;rintf("\nOutside for-loop");

3 && b < 785; a++, b = b+2)

Code
6.18

&d ",a);

Output(s)

Inside for-loop,a=0b =20
Inside for-loop,a=1b =2
Inside for-loop,a=2b =4

Outside for-loop

Example 6.11 In this example, logical OR || is used at the conditional part of the

for-loop.

#include <stdio.h>

int main()
{
for (int a =0, b=20; a< 3

{

printf ("Inside for-loop, a

printf("b = %d \n",b);
}
printf ("\nOutside for-loop");

Code
6.19
Il b < 4; a++, bt+)
= %d ",a);

Output(s)

Inside for-loop,a=0b =20
Inside for-loop,a=1b =1
Inside for-loop,a=2b =2
Inside for-loop,a=3b =3

Outside for-loop

6.1 The For-Loop

Example 6.12 Different updates can be used at the update part of the for-loop.

#include <stdio.h> Code
6.20
int main()
{
for (int a =0, b=2; a<3 || b<i4; a++, b = b+))
{
printf ("Inside for-loop, a = %d ",a);
printf("b = %d \n",b);
}
printf ("\nOutside for-loop");
}
Output(s)

Inside for-loop,a=0b =2
Inside for-loop,a=1b =7
Inside for-loop,a=2b =12

Outside for-loop

135

Example 6.13 Floating point variables can be used at the header of the for-loop.

#include <stdio.h> Code
6.21
int main()
{
int a;
double b;
for (a =0, b= 2.7; a*b < 25.6; a++, b++)
{
printf("Inside for-loop, a = %d ",a);
printf("b = $.1f \n",b);
}
printf ("\nQuitted for-loop\n\n");
printf ("Outside for-loop, a = %d ",a);
printf("b = $.1f \n",b);
}
Output(s)

Inside for-loop,a=0b = 2.7
Inside for-loop,a=1b = 3.7

136

Inside for-loop, a =2b =4.7
Inside for-loop, a =3 b =15.7

Quitted for-loop

Outside for-loop, a =4b = 6.7

6 Loop Statements

Example 6.14 In this example, it is shown that two for-loops can employ the same

parameter at their headers.

#include <stdio.h>

int main()

{

int a;
for (a = 0; a < 3; a++)

{
printf("Inside for-loop-1, a = %d \n",a)

}

for (a = 8; a < 11; a++)
{

}

printf ("\nOutside for-loop-2, a = %d \n",a);

’

printf ("\nOutside for-loop-1, a = %d \n\n",a);

printf ("Inside for-loop-2, a = %d \n",a);

Code
6.22

Output(s)

Inside for-loop-1,a =0
Inside for-loop-1,a =1
Inside for-loop-1,a =2

Outside for-loop-1, a =3
Inside for-loop-2,a = 8
Inside for-loop-2,a =9

Inside for-loop-2, a = 10

Outside for-loop-2, a = 11

6.1 The For-Loop

Example 6.15 Infinite loop can be created using the structure in Code 6.23.

#include <stdio.h> Code
6.23
int main ()
{
for (; ;)
{

printf("Infinite loop\n");
}

Output(s)

Infinite loop
Infinite loop
Infinite loop

Example 6.16 Another infinite loop is written in Code 6.24.

#include <stdio.h> Code
6.24

int main()
{
for (; 7.34 ;)
{
printf ("Another infinite loop\n");
}

Output(s)

Another infinite loop
Another infinite loop
Another infinite loop

138 6 Loop Statements

Example 6.17 In Code 6.25, the for-loop header has only conditional part, and the
condition becomes false when the value of “b” equals 3.

#include <stdio.h> Code
#include <stdbool.h> 6.25

int main()

{
bool a = true;
int b = 0;

for (; a ;)

{
printf("Inside for-loop, b = %d \n",b);
b++;
if(b > = 2)

a = false;
}
printf ("\nOutside for-loop, b = %d \n",b);
}
Output(s)

Inside for-loop, b =0
Inside for-loop, b =1
Inside for-loop, b =2

Outside for-loop, b = 3

6.1.1 Nested For-Loop

For-loops can be used in a nested manner. The structure of nested for-loops is shown
in Code 6.26.

for (initl; conditionl; updatel) Code
{ 6.26
// outer loop statementsl

for (init2; condition2; update2)
{

// inner loop statements

}

// outer loop statements?

6.1 The For-Loop 139

Example 6.18 Let us write a nested for-loop. For this purpose, first let us place the
first for-loop as in Code 6.27.

#include <stdio.h> Code
6.27
int main()
{
for(int indxN = 0; indxN < 3; indxN++)
{
}
}

We write a printf() function inside the first loop as in Code 6.28.

#include <stdio.h> Code

6.28

int main()

{

for(int indxN = 0; indxN < 3; indxN++)
{
printf ("\n\nInside outer loop, indxN = %d", indxN) ;

Inside the first for-loop, we place the structure of the second for-loop as in Code
6.29.

#include <stdio.h> Code

6.29

int main()

{

for(int indxN = 0; indxN < 3; indxN++)
{
printf ("\n\nInside outer loop, indxN = %d", indxN) ;

for(int indxM = (; indxM < °; indxM++)
{

}

140 6 Loop Statements

Two printf() functions, one inside the second for-loop and the other one outside
both for-loops, are written as in Code 6.30.

#include <stdio.h> Code
6.30

int main()
{
for(int indxN = 0; indxN < 3; indxN++)
{
printf ("\n\nInside outer loop, indxN = %d", indxN) ;

for(int indxM = 0; indxM < 3; indxM++)
{
printf("\nInside inner loop, indxM = %d ", indxM);
}
}

printf ("\n\nOutside outer loop");

Output(s)

Inside outer loop, indxN = 0
Inside inner loop, indxM = 0
Inside inner loop, indxM = 1
Inside inner loop, indxM = 2

Inside outer loop, indxN = 1
Inside inner loop, indxM = 0
Inside inner loop, indxM = 1
Inside inner loop, indxM = 2

Inside outer loop, indxN = 2
Inside inner loop, indxM = 0
Inside inner loop, indxM = 1
Inside inner loop, indxM = 2

Outside outer loop

6.2 The While-Loop

In the while-loop, first initialization is performed, then loop condition is checked,
and loop body is executed; updating can be performed inside the loop body.
The syntax of the while-loop is

6.2 The While-Loop 141

Fig. 6.1 The while-loop
execution logic

Loop Condition

Inside While-LOOP

—

// Initialization statements

while (condition)

{
// Loop statements

}

The statements inside the while-loop parentheses are executed as long as the
condition is true. The operation of the while-loop is illustrated in Fig. 6.1.

Example 6.19 This example illustrates the use of the while-loop.

#include <stdio.h> Code
6.31

int main()
{

int a = 2;
while(a < 9)
{

printf("Inside while-loop, a = %d \n", a);

a = a+’;

}

printf ("\nOutside while-loop, a = %d ", a);

142 6 Loop Statements

Output(s)

Inside while-loop, a = 2
Inside while-loop, a = 4
Inside while-loop, a = 6
Inside while-loop, a = 8

Outside while-loop, a = 10

Example 6.20 Inside the while-loop, we can use conditional statements as in Code
6.32.

#include <stdio.h> Code
6.32
int main()
{
int a = 2;
while (a)
{
printf("Inside while-loop, a = %d \n", a);
if(a == 8)
{
a=0;
}
else
a = at+’;
}
printf ("\nOutside while-loop, a = %d ", a);
}
Output(s)

Inside while-loop, a = 2
Inside while-loop, a = 4
Inside while-loop, a = 6
Inside while-loop, a = 8

Outside while-loop, a =0

6.2 The While-Loop

Example 6.21 The while-loop condition can contain logical expressions.

{

#include <stdio.h>

int main/()

int a = 2;

while(a < 10)
{
printf ("Inside while-loop, a = %d

a = a+’;
}
printf ("\nOutside while-loop, a = %d

Code
6.33

\n", a);

", a);

Output(s)

Inside while-loop, a = 2
Inside while-loop, a = 4
Inside while-loop, a = 6
Inside while-loop, a = 8

Outside while-loop, a = 10

Example 6.22 It is possible to define an infinite while-loop as in Code 6.34.

Output(s)
a=2
a=4

a==o6

#include <stdio.h> Code
6.34

int main()
{

int a = 2;
while (1)
{
printf("a = %d \n", a);

a = at+’;

143

144 6 Loop Statements

Example 6.23 Multiconditional expressions may appear inside the while-loop.

#include <stdio.h> Code
6.35

int main()
{

int a = 1;

while(a < 20)
{

if(a%$ 7==0 1| a$% 9 ==0)
printf("Inside while-loop, a = %d \n", a);
at++;
}
printf ("\nOutside while-loop, a = %d ", a);

Output(s) -6.xx

Inside while-loop, a =7
Inside while-loop, a =9
Inside while-loop, a = 14
Inside while-loop, a = 18

Outside while-loop, a = 20

6.2.1 Nested While-Loop

The structure of the nested while-loop is shown in Code 6.36.

while (conditionl) Code
{ 6.36

// outer loop statementsl

while (condition2)

{

// inner loop statements

}

// outer loop statements?2

6.2 The While-Loop 145

Example 6.24 Let us form a nested while-loop. For this purpose, we write the first
while-loop as in Code 6.37.

#include <stdio.h> Code
6.37
int main()
{
int indxN = 0;
while (indxN < 3)
{
}
}

We add printf and update statements as in Code 6.38.

#include <stdio.h> Code
6.38
int main/()
{
int indxN = 0, indxM = 0;
while (indxN < 3)
{
printf ("\n\nInside outer loop, indxN = $d", indxN) ;
indxN++;
}
}

The structure of the second while-loop is placed into the first while-loop as in
Code 6.39.

#include <stdio.h> Code
6.39

int main()

{
int indxN = 0, indxM = 0;
while (indxN < 3)
{

printf ("\n\nInside outer loop, indxN %d", indxN) ;

while (indxM < 3)
{

}
indxN++;

146 6 Loop Statements

We add printf and parameter update expressions inside the second while-loop,
and add one printf() function outside both loops as in Code 6.40.

#include <stdio.h> Code
6.40

int main()

{
int indxN = 0, indxM = 0;

while (indxN < 3)
{
printf ("\n\nInside outer loop, indxN = %d", indxN) ;

while (indxM < 3)
{
printf ("\nInside inner loop, indxM = %d ", indxM) ;

indxM++;
}
indxN++;
indxM = 0;

printf ("\n\nOutside outer loop");

Output(s)

Inside outer loop, indxN = 0
Inside inner loop, indxM = 0
Inside inner loop, indxM = 1
Inside inner loop, indxM = 2

Inside outer loop, indxN = 1
Inside inner loop, indxM = 0
Inside inner loop, indxM = 1
Inside inner loop, indxM = 2

Inside outer loop, indxN = 2
Inside inner loop, indxM = 0
Inside inner loop, indxM = 1
Inside inner loop, indxM = 2

Outside outer loop

6.3 The Do-While Loop 147
6.3 The Do-While Loop

The syntax of the do-while loop is

// Initialization statements

do

{
// Loop statements

} while (condition);

Loop statements are executed as long as the condition is true. Note that the
do-while loop is executed at least once.

Example 6.25 Do-while loop is executed at least once.

#include <stdio.h> Code
6.41
int main()
{
int a = 0;
do
{
printf ("do-while Loop is executed at least once.\n");
} while(a);
printf ("Outside do-while loop.");
}
Output(s)

do-while Loop is executed at least once.
Outside do-while loop.

Example 6.26 Loop condition can be a logical expression.

#include <stdio.h> Code
6.42
int main()
{
int a = 2;
do
{

printf ("Inside do-while loop, a = %d \n", a);
a = a+’;
} while(a < 9);

printf ("\nOutside do-while loop, a = %d ", a);

148 6 Loop Statements

Output(s)

Inside do-while loop, a = 2
Inside do-while loop, a = 4
Inside do-while loop, a =6
Inside do-while loop, a = 8

Outside do-while loop, a = 10

Example 6.27 In this example, we form a product table using the do-while loop.

#include <stdio.h> Code
6.43

int main()

{

inta=7, b=1;

do

{
printf ("%d X %5d = %5d \n", a, b, a * b);
b++;

}

while (b < 5);

}

Output(s)
7x1 =7
7x2 =14
7x3 =21
7 x4 =28

6.4 Continue Statement

Continue statement is used to skip the rest of the statements when a condition is met,
and program execution returns to the beginning of the loop.
The use of the continue statement in the while-loop is illustrated in Fig. 6.2.

Fig. 6.2 Behavior of the while (conditionl)
continue statement in the {
while-loop // statements

if (condition2)

{

continue;

}

// statements

6.4 Continue Statement 149

for(initialization; conditionl; update)
{

// statements

if (condition2)

{
continue;
}
// statements

Fig. 6.3 Behavior of the continue statement in the for-loop

Fig. 6.4 Behavior of the do
continue statement in the {

do-while loop // statements
if (conditionl)

{

continue;

}
// statements
}while (condition2) ;

The use of the continue statement in the for-loop is illustrated in Fig. 6.3.
The use of the continue statement in the do-while loop is illustrated in Fig. 6.4.

Example 6.28 In this example, we use the continue statement in a for-loop.

#include <stdio.h> Code
6.44
int main() x
{
for(int a = 0; a < 7; a++)
{
if(a == 3)
continue;
printf ("a=%d ",a);
}
}

When a==3, the printf() function is not executed, program execution goes to the
beginning of the loop.

Output(s)
a=0 a=1 a=2 a=4 a=5 a=6

150 6 Loop Statements

Example 6.29 In this example, we use the continue statement in a while-loop.

#include <stdio.h> Code
6.45

int main()
{
int a = 05
while(a < 95)
{
at++;

printf ("while-loop upper part is executed, a = %d\n",a);

if (a==3

{
printf ("\n\"continue\" statement is executed, a = %d\n",a);
printf ("while-loop lower part is skipped\n\n");
continue;

}

printf ("while-loop lower part is executed, since a = %d\n",a);

}

printf ("\nOutside while-loop");

When a==3, the rest of the code is not executed, program execution goes to the
beginning of the loop.

Output(s)

while-loop upper part is executed, a = 1
while-loop lower part is executed, a = 1
while-loop upper part is executed, a = 2
while-loop lower part is executed, a = 2
while-loop upper part is executed, a = 3

“continue” statement is executed, since a = 3
while-loop lower part is skipped

while-loop upper part is executed, a = 4
while-loop lower part is executed, a = 4
while-loop upper part is executed, a = 5
while-loop lower part is executed, a = 5

Outside while-loop

6.5 Break Statement

Break statement is used to quit the loop when a condition is met.
The use of the break statement in the while-loop is illustrated in Fig. 6.5.

6.5 Break Statement 151

Fig. 6.5 Behavior of the while (conditionl)
break statement in the while- {
loop

// statements
if (condition2)

{
break;
}
// statements
}
Fig. 6.6 Behavior of the for(initialization; conditionl; update)
break statement in the for- {
loop // statements
if (condition2)
{
break;
}
// statements
}
Fig. 6.7 Behavior of the do
break statement in the {

do-while loop // statements

if (conditionl)
{
break;

}
// statements
}while (condition2)

The use of the break statement in the for-loop is illustrated in Fig. 6.6.
The use of the break statement inside the do-while loop is illustrated in Fig. 6.7.

Example 6.30 Let us use the break statement for a for-loop. First, let us form the
structure of the for-loop as in Code 6.46.

152

6 Loop Statements

#include <stdio.h>

int main()
{

int a;

for (a

{

; a<

7; att)

Code
6.46

We add printf() function in Code 6.47.

#include <stdio.h>

int main()
{

int a;

for(a = 0; a

{

< 7; at+)

printf("Inside for-loop,

a

}

Code
6.47

%d \n", a);

We add a condition part as in Code 6.48.

#include <stdio.h>

int main()
{
int a;

for(a = 0; a

{

< 7; a++)
if(a == 3)

{
}

printf("Inside for-loop,

a

Code
6.48

%d \n", a);

Inside the condition part, we add printf and break statements, and add one more

printf() function outside the for-loop as in Code 6.49.

6.5 Break Statement

#include <stdio.h> Code
6.49
int main()
{
int aj
for(a = 0; a < 7; a++)
{
if(a == 3)
{
printf ("Quitting for-loop, a = %d \n", a);
break;
}
printf ("Inside for-loop, a = %d \n", a);
}
printf ("\nOutside for-loop, a = %d ", a);
}
Output(s)

Inside for-loop, a =0
Inside for-loop, a = 1
Inside for-loop, a =2
Quitting for-loop, a = 3

Outside for-loop, a = 3

Example 6.31 In this example, we use the break statement inside a while-loop.

#include <stdio.h> Code
6.50

int main()
{

int a = 2;

while (1)
{

printf("Inside while-loop, a = %d \n", a);
a = a+’;

if (a > 8)
break;

}
printf ("\nOutside while-loop, a = %d ", a);

153

154 6 Loop Statements

Output(s)

Inside while-loop, a = 2
Inside while-loop, a = 4
Inside while-loop, a = 6
Inside while-loop, a = 8

Outside while-loop, a = 10

Example 6.32 In this example, we use bool data type for the while-loop condition.

#include <stdio.h> Code
#include <stdbool.h> 6.51

int main()

{ bool a = true;
double b = 0;
while (a)
{ printf ("Inside while-loop, b = %.1f \n", b);
b = b+2.6;
if(b > 10)
a = false;

}

printf ("\nOutside while-loop, b = $.1f ", b);

Output(s)

Inside while-loop, b = 0.0
Inside while-loop, b = 2.6
Inside while-loop, b = 5.2
Inside while-loop, b = 7.8

Outside while-loop, b = 10.4

Example 6.33 In this example, we use the break statement in an infinite do-while
loop after an if statement. No curly parentheses are used for the if statement.

6.5 Break Statement 155

#include <stdio.h> Code
6.52
int main()
{
int a = 2;
do
{
printf ("Inside do-while loop, a = %d \n", a);
a = at+’;
if (a > 9)
break;
} while(1);
printf ("\nOutside do-while loop, a = %d ", a);
}
Output(s)

Inside do-while loop, a =2
Inside do-while loop, a = 4
Inside do-while loop, a = 6
Inside do-while loop, a = 8

Outside do-while loop, a = 10

Example 6.34 In this example, we use the break statement inside the parentheses of
a conditional expression.

#include <stdio.h> Code
6.53

int main()
{

int a;

do

{

printf ("Please enter a negative number : ");

scanf ("%d", &a);

printf("Inside the do-while loop, you entered %d \n", a);

if (a > 0)

{
printf ("\nYou entered a positive number. Quitting the loop.");
break;

}

} while(1);

printf ("\n\nOutside the do-while loop, you last entered %d \n", a);

156 6 Loop Statements

Output(s)

Please enter a negative number : —2

Inside the do-while loop, you entered —2

Please enter a negative number : —3

Inside the do-while loop, you entered —3

Please enter a negative number : 1

Inside the do-while loop, you entered 1

You entered a positive number. Quitting the loop.
Outside the do-while loop, you last entered 1

Problems
1. What are the outputs of Code 6.54?

#include <stdio.h> Code
6.54

int main()
{
for (int a = 5; a > 0; a = a-2)
{
printf ("Inside for-loop\n ");

}

printf ("\nOutside for-loop");

2. Write a program that displays the first 10 even integers. Use the for-loop in
your code.

3. Write a C program that inputs an integer from the user and calculates the factorial
of the entered number.

4. Write a program that calculates and displays the sum of the series

B () -

5. Write three separate C programs that display the patterns in Fig. 6.8.

6. Write a C program that inputs an integer from the user to determine the number of
digits in the entered number.

7. Write a C program that converts a binary number to decimal.

Fig. 6.8 Patterns to be *

displayed *k *
Kk k falld
*kkk * ok K
*kkkk * ok ok ok

* % % % % % * % *x * % *

®

Check for
updates

Chapter 7
Complex Numbers in Modern C
Programming

7.1 How to Define a Complex Number

To define complex numbers and perform operations on complex numbers, we need
to include the header file <complex.h> in our program.
The variables employing complex data type can be defined either using

double Complex var_name;
float _Complex var_name;
long double _Complex var_ name;

or using

double complex var_name;
float complex var_name;
long double complex var_ name;

The real part of a complex number can be extracted using the functions
crealf, creal, creall
which have prototypes

float crealf(float complex z);
double creal(double complex z);
long double creall(long double complex z) ;

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 157
O. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45361-8_7&domain=pdf
https://doi.org/10.1007/978-3-031-45361-8_7#DOI

158 7 Complex Numbers in Modern C Programming

The imaginary part of a complex number can be extracted using the functions
cimagf, cimag, cimagl
which have prototypes

float cimagf(float complex z);
double cimag(double complex z);
long double ecimagl(long double complex z)

If the range is not a concern, we can use the functions

double creal(double complex z);
double cimag(double complex z);

for float and long double data types.

7.2 Complex Operations

Standard arithmetic operators +, —, *, / can be used with real, complex types in any
combination.

Example 7.1 We can define complex numbers using both Complex and
complex.

#include <complex.h> Code
#include <stdio.h> 7.1
int main ()
{
float _Complex a = 1 + 2*I;
float complex b = -2 + 3*I;
printf("a = $.1f + $.1fi \n", creal(a), cimag(a));
printf("b = $.1f + $.1fi \n", creal(b), cimag(b));
}
Output(s)
a=1.0+2.0i

b=-2.0+3.0i

7.2 Complex Operations 159

Example 7.2 We can multiply two complex numbers as in Code 7.2.

#include <complex.h> Code
#include <stdio.h> 7.2

int main()

{

float complex a = | + 2*I;
float complex b = -2 + 3*I;
float complex ¢ = a*b;

printf("c = $.1f + %.1fi \n", creal(c), cimag(c)):;

Output(s) ¢ = —8.0 + —1.01

Example 7.3 Division and addition operations can be performed on complex
numbers.

#include <complex.h> Code
#include <stdio.h> 7.3

int main()

{
float complex a = 1 + 2*I;
float complex b = -2 + 3*I;
float complex rl = a*b;

float complex r2, r3;

r2 = a/b;
r3 = a+b;
printf("rl $.1f + $.1f1 \n", creal(rl), cimag(rl));
printf("r2 = $f + $fi \n", creal(r2), cimag(r2)):;
printf("r3 = $.1f + %.1fi \n", creal(r3), cimag(r3)):;
}
Output(s)

rl =-8.0+—1.01
12 = 0.307692 + —0.538462i
3 =—-1.0+5.0i

160

7 Complex Numbers in Modern C Programming

Example 7.4 In this example, we define double and long double complex numbers.

#include <complex.h>

#include <stdio.h>

int main()

{
float complex a = 1 +
double complex b = -2
long double complex c
long double complex d
printf("d = %$.1f + %.

}

Code
7.4

2 *I,-
3*I;
4 —':;*I,’

a*b;

1fi \n", creal(d), cimag(d));

Output(s) d = —8.0 + —1.0i

Example 7.5 Arithmetic operations
and real numbers.

can be performed between complex numbers

#include <complex.h> Code
#include <stdio.h> 7.5
int main()
{
float complex a = 1 + 2*I;
float b = =2;
float complex c = a+b;
float complex d = a*b;
float e = a*b;
printf("c = $.1f + $.1fi \n", creal(c), cimag(c));
printf("d = $.1f + %$.1fi \n", creal(d), cimag(d));
printf("e = $.1f ", e);
}
Output(s)
c=-1.0+2.01

d=-2.0+—-4.0i
e=-2.0

7.4 Complex Number Formation

161

7.3 Calculation of Absolute Value (Norm, Modulus,
or Magnitude) of a Complex Number

The absolute value of a complex number in C can be calculated using the functions

cabsf, cabs, cabsl

The prototypes of these functions are

float cabsf(float complex z);

double cabs(double complex z);

long double cabsl(long

double complex z);

Example 7.6 In this example, we calculate the norms of float, double, and long
double complex numbers.

#include <complex.h> Code
#include <stdio.h> 7.6
int main|()
{

float complex a = -3 - 4*I;

double complex b = + 4*I;

long double complex c = -3 + 4%*I;

float norm a = cabsf(a);

double norm b = cabs(b) ;

long double norm c = cabsl(c);

printf("Norms are : %$.1f, $.11f, %.1LF", norm_a, norm b, norm c);
}

Output(s)

Norms are : 5.0, 5.0, 5.0

7.4 Complex Number Formation

A complex number can be obtained by providing its real and imaginary parts to the
macros

CMPLXF, CMPLXF, CMPLXL

and these macros are used as

162

double complex CMPLX (double x, double y);
float complex CMPLXF (float x, float y)

7 Complex Numbers in Modern C Programming

long double complex CMPLXL (long double x, long double y);

Example 7.7 In this example, we form a float complex number using CMPLXL

function.

#include <complex.h>

Code

#include <stdio.h> 7.7
int main(void)
{

float real = 1.5, imag = 1.7;

float complex a = CMPLXF (real, imag);

printf("a = $%$.1f + %.1fi", creal(a), cimag(a));
}

Output(s) a=1.5+ 1.7i

Example 7.8 In this example, we form a double complex number using the

CMPLXL function.
#include <complex.h> Code
#include <stdio.h> 7.8

int main(void)
{
double real = 1.5, imag = ;

double complex a = CMPLX(real, imag);

printf ("Absolute value = $.1f", cabs(a));

Output(s) Absolute value = 2.3

7.5 Calculation of the Conjugate of a Complex Number in C

The conjugate of a complex number can be calculated using the functions

conjf, conj, conjl

7.5 Calculation of the Conjugate of a Complex Number in C
whose declarations are given as

float complex conjf (float complex z);
double complex conj (double complex z);
long double complex conjl (long double complex z);

Example 7.9 In this example, we print a complex number and its conjugate.

163

#include <stdio.h>
#include <complex.h>

Code
7.9

int main(void)

{
double complex z = 1.0 + 2.0*I;
double complex conj_z = conj(z);

printf("z = %.1f + %$.1fi\n", creal(z), cimag(z));
printf("z* = %.1f + %.1fi", creal(conj_z), cimag(conj_z));
}
Output(s)
z=1.0+2.0i

z* =10+ —-2.0i

Example 7.10 In this example, we multiply a complex number by its conjugate and

print the result.

#include <stdio.h> Code
#include <complex.h> 7.10

int main(void)
{
double complex z = 1.0 + 2.0*I;

double complex conj_z = conj(z);

double complex z2 = z * conj_z;
printf("z x z* = $%$.1f + %$.1fi\n", creal(z2), cimag(z2))

’

Output(s) z x z* = 5.0 + 0.0i

164 7 Complex Numbers in Modern C Programming

7.6 Calculation of the Argument, That Is, Phase Angle, of a
Complex Number in C

The angle of a complex number can be calculated using the functions
cargf, carg, cargl
whose prototypes are given as

float cargf (float complex z);
double carg (double complex z);
long double cargl (long double complex z);

Example 7.11 In this example, the phase of a complex number is displayed in both
radians and degrees.

#include <stdio.h> Code
#include <complex.h> 7.11
#include <math.h>

int main(void)

{

double complex z = 1.0 + 1.0*I;

printf("z = $.1f + $.1fi\n", creal(z), cimag(z));

printf ("Phase angle of z in radians : $f\n", carg(z));
printf("Phase angle of z in degrees : %.1f\n", (carg(z)/M PI)*130);

printf("The value of pi here is : %1f\n", M PI);

Output(s)

z=1.0+1.0i

Phase angle of z in radians : 0.785398
Phase angle of z in degrees : 45.0
The value of pi here is : 3.141593

7.7 Calculation of Complex Exponentials

The exponential expression
@Z
where z is a complex number can be calculated in C language using the functions

cexpf, cexp, cexpl

7.8 Computation of the Complex Natural (Base-e) Logarithm of a Complex Number 165

and the prototypes of these functions are

float complex cexpf (float complex z);
double complex cexp (double complex z);
long double complex cexpl (long double complex z);

For complex number
z=a+1ib

the exponential term

is calculated as

a-+ib

e =e""" > e"=¢(cosb +isinb)

Example 7.12 In this example, calculation of complex exponential is illustrated.

#include <stdio.h> Code
#include <math.h> 7.12
#include <complex.h>

int main(void)

{
double PI = acos(-1);
double complex z = 0.5+I * PI/4;
double complex exp_z = cexp(z);

printf("z = $.1f + %.1fi\n", creal(z), cimag(z));
printf("e”z = $.1f + $.1fi", creal(exp_z), cimag(exp_z));

Output(s)
z=05+038i
erz=12+1.2i

7.8 Computation of the Complex Natural (Base-e)
Logarithm of a Complex Number

The complex natural logarithm of complex float, complex double, and complex
long-long double numbers can be calculated using the functions

166 7 Complex Numbers in Modern C Programming
clogf, clog, clogl
whose prototypes are

float complex clogf (float complex z);
double complex clog (double complex z);
long double complex clogl (long double complex z);

Example 7.13 In this example, the natural logarithm of a complex number is
calculated and displayed.

#include <stdio.h> Code
#include <complex.h> 7.13
x

int main(void)
{
double complex z = 1+I;
double complex loge z = clog(z);

printf("z = %.1f
printf("log e(z)

i\n", creal(z), cimag(z)):;
+ %.1fi", creal(loge_z), cimag(loge_z));

n +
oo

5. 1f
1f

o
S .

Output(s)
z=1.0+1.0i
log_e(z) = 0.3 + 0.8i

7.9 Complex Power Calculation

The complex power x” can be calculated using the functions
cpowf, cpow, cpowl
whose prototypes are

float complex cpowf (float complex x, float complex y);
double complex cpow (double complex x, double complex y);

long double complex cpowl (long double complex x, long double complex y)’

7.10 Square Root of a Complex Number 167

Example 7.14 In this example, the complex power calculation is illustrated.

#include <stdio.h> Code
#include <complex.h> 7.14

int main(void)
{
double complex z = cpow(l.0-3.0%I, 3);
printf(" (1-31)"3 = %.1f + %.1fi \n", creal(z), cimag(z));

Output(s) (1 — 3i)*3 = —26.0 + 18.0i

7.10 Square Root of a Complex Number

The square root of a complex number can be calculated using the functions
csqgrtf, csqrt, csqgrtl
whose prototypes are

float complex csqrtf (float complex z);
double complex csqrt (double complex z);
long double complex csqrtl (long double complex z);

Example 7.15 In this example, the square root of a complex number is calculated
and the result is printed.

#include <stdio.h> Code
#include <complex.h> 7.15

int main(void)
{

double complex z = csqrt(-4 + 3*I);

printf ("Square root of -4 + 31 is : %.1f + %.1fi \n", creal(z), cimag(z)):;

}

Output(s) Square root of —4 + 3iis: 0.7 + 2.1i

168 7 Complex Numbers in Modern C Programming

7.11 Complex Trigonometric Functions

7.11.1 The csin Functions

The csin functions
csinf, csin, csinl
are used to compute the complex sine of z, and the prototypes of these functions are

float complex csinf (float complex z);
double complex csin (double complex z);
long double complex csinl (long double complex z) ;

Example 7.16 In this example, the complex sine of a complex number is calculated
and the result is printed.

#include <stdio.h> Code
#include <math.h> 7.16
#include <complex.h>

int main(void)
double complex z = csin(-2+3*I);

o

printf("csin (-3+21i) = %.2f + %$.2fi \n", creal(z), cimag(z));

Output(s) csin(—3+2i) = —9.15 + —4.171

7.11.2 The ccos Functions

The ccos functions
ccosf, ccos, ccosl

are used to compute the complex cosine of z, and the prototypes of these functions
are

float complex ccosf (float complex z)
double complex ccos (double complex z);
long double complex ccosl (long double complex z);

7.11 Complex Trigonometric Functions 169

Example 7.17 In this example, the complex cosine of a complex number is
calculated and the result is printed.

#include <stdio.h> Code
#include <math.h> 7.17
#include <complex.h>

int main(void)
double complex z = ccos(-2+3*I);

o

printf("ccos (-3+21) = $.2f + %.2fi \n", creal(z), cimag(z)):;

Output(s) ccos(—3+2i) = —4.19 + 9.11i

7.11.3 The ctan Functions

The ctan functions
ctanf, ctan, ctanl

are used to compute the complex tangent of z, and the prototypes of these functions
are

float complex ctanf (float complex z);
double complex ctan (double complex z);
long double complex ctanl (long double complex z);

Example 7.18 In this example, the complex tangent of a complex number is
calculated and the result is printed.

#include <stdio.h> Code
#include <math.h> 7.18
#include <complex.h>

int main(void)
{

double complex z = ctan(-2+3*I);

o

printf("ctan (-3+21) = %$.4f + $.4fi \n", creal(z), cimag(z)):;

Output(s) ctan(—3+2i) = 0.0038 + 1.0032i

170 7 Complex Numbers in Modern C Programming
7.11.4 The cacos Functions

The cacos functions
cacosf, cacos, cacosl

are used to compute the complex arc cosine of complex number z, and the prototypes
of these functions are

float complex cacosf (float complex z);
double complex cacos (double complex z);
long double complex cacosl (long double complex z);

Example 7.19 In this example, the complex arc cosine of a complex number is
calculated and the result is printed.

#include <stdio.h> Code
#include <math.h> 7.19
#include <complex.h>

int main(void)
{

double complex z = cacos(-2+3*I);

printf("cacos (-3+21) = %$.2f + %$.2fi \n", creal(z), cimag(z)):;

Output(s) cacos(—3+2i) =2.14 + —1.98i

7.11.5 The casin Functions

The casin functions
casinf, casin, casinl

are used to compute the complex arc sine of complex number z, and the prototypes
of these functions are

float complex cacosf (float complex z);
double complex cacos (double complex z);
long double complex cacosl (long double complex z);

7.11 Complex Trigonometric Functions 171

Example 7.20 In this example, the complex arc sine of a complex number is
calculated and the result is printed.

#include <stdio.h> Code
#include <math.h> 7.20
#include <complex.h>

int main(void)
{

double complex z = casin(-2+3*I);

o

printf("casin (-3+2i) = %.2f + %.2fi \n", creal(z), cimag(z));

Output(s) casin(—3+2i) = —0.57 + 1.98i

7.11.6 The catan Functions

The catan functions
catanf, catan, catanl

are used to compute the complex arc tangent of complex number z, and the pro-
totypes of these functions are

float complex catanf (float complex z);
double complex catan (double complex z);
long double complex catanl (long double complex z);

Example 7.21 In this example, the complex arc tangent of a complex number is
calculated and the result is printed.

#include <stdio.h> Code
#include <math.h> 7.21
#include <complex.h>

int main(void)
{

double complex z = catan(-2+3*I);

printf("catan (-3+2i) = $.2f + %.2fi \n", creal(z), cimag(z));

Output(s) catan(—3+2i) = —1.41 + 0.23i

172 7 Complex Numbers in Modern C Programming
7.11.7 Hyperbolic Functions

The hyperbolic functions of complex numbers can be calculated using built-in
hyperbolic complex function. In this section, we explain these functions.

The csinh Functions
The csinh functions compute the complex hyperbolic sine of z, and the prototypes of
these functions are

float complex csinhf (float complex z);
double complex csinh (double complex z);
long double complex csinhl (long double complex z);

The ccosh Functions
The ccosh functions compute the hyperbolic cosine of z, and the prototypes of these
functions are

float complex ccoshf (float complex z);
double complex ccosh (double complex z);
long double complex ccoshl (long double complex z);

The ctanh Functions
The ctanh functions compute the hyperbolic tangent of z, and the prototypes of these
functions are

float complex ctanhf (float complex z);
double complex ctanh (double complex z);
long double complex ctanhl (long double complex z);

The casinh Functions
The casinh functions compute the complex arc hyperbolic sine of z, and the pro-
totypes of these functions are

float complex casinhf (float complex z);
double complex casinh (double complex z);
long double complex casinhl (long double complex z);

The cacosh Functions
The cacosh functions compute the complex arc hyperbolic cosine of z, and the
prototypes of these functions are

7.11 Complex Trigonometric Functions 173

float complex cacoshf (float complex z);
double complex cacosh (double complex z);
long double complex cacoshl (long double complex z);

The catanh Functions
The catanh functions compute the complex arc hyperbolic tangent of z, and the
prototypes of these functions are

float complex catanhf (float complex z);
double complex catanh (double complex z);
long double complex catanhl (long double complex z);

Problems

1. Which header file should we include in the source code to be able to define the
complex numbers?

2. Define a complex number, initialize it to 3 + 4j, and print it.

3. Fill the inside of printf() function to print the real and imaginary parts of the
complex number as in Code 7.22.

#include <complex.h> Code
#include <stdio.h> 7.22

int main()

{

float complex a= 5 + 2*I;

printf(.....);

4. Write a program that inputs the real and imaginary parts of a complex number
from the user and calculates its magnitude and displays it.

5. Write a C program that calculates and prints the magnitude and phase of 3 — 4;.
Phase is printed both in radian and degree units.

6. Write a C program that calculates and prints the sine, cosine, Ln of the complex

number 2 + /3 Jj-

®

Check for
updates

Chapter 8
Arrays

8.1 Syntax for Array Declaration

The syntax for array declaration is

dataType arrayName [arraySize] = {vall, val2,...,valN};

8.2 Accessing Array Elements

We can access array elements using subscript operator [] and the index value of the
element as in

arrayName [index]

The indexing in the array always starts with 0, and the index of the last element is
N — 1, so new values to the array elements are assigned using

array name[i] = new value;

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 175
O. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45361-8_8&domain=pdf
https://doi.org/10.1007/978-3-031-45361-8_8#DOI

176

8 Arrays

Example 8.1 We can define int, char, float, and double arrays as in Code 8.1.

#include <stdio.h> Code
8.1
int main|()
{
int al[6]l;
char b[5];
float cl[4];
double d[7];
}
Example 8.2 Array elements can be initialized.
int main() Code
{ 8.2
int a[ll = {1}’
int b[2] = {4, ©};
}

Example 8.3 Code 8.3 and Code 8.4 achieve the same goal.

int main()
{ 8.
int a[3] = {7, 13, 54};

}

int main () Code
{ 8.4
int a[3]1;
al[0] = 7;
alll = 13;
al2] =5

Example 8.4 Initialization starts from the first element, noninitialized elements

equal to zero by default.

#include <stdio.h>

int main()

{

int af4] {2, 7};
printf(
printf(
printf (

printf(

Code
8.5

,al01);
alll) s

alzl);

al31);

8.3 Array Initialization Without Size 177

Output(s)
a[0]=2 a[l]=7
a2] =0 a[3]=0

Example 8.5 Array name shows an address in the memory. If we use an index value
larger than the array size, we refer to a memory location that is not reserved for the
array variable, and these locations may be inaccessible, or if they are accessible, they
can contain values.

#include <stdio.h> Code
8.6

int main()

{
int a[2] = {3,6};
printf(, al0l);
printf (, alll);
printf(, al71);
printf(, all01);
printf(,oal 1)

}

Output(s)
a[0] = 3 a[l] = 6 a[7] = 32678 a[l0] = 1829073257 a[100] = —
1864110261

8.3 Array Initialization Without Size

We can define an array and initialize as in
dataType arrayName [] = {vall, val2,...,valN};

In this case, array size is determined by the compiler considering the number of
initialization values.

178

8 Arrays

Example 8.6 In Code 8.7, we define an array without size and initialize it when it is

defined.

Output(s)

#include <stdio.h>

int main()

{

int a[] = {3,6,8,9}:

printf(
printf(
printf (
printf(

Code
8.7

, al0l):

, alll):
, al?21):
, al3l);

a[0]=3 a[l]=6
a2] =8 a[3]=9

Example 8.7 In Code 8.8, for the initialization of the array, two values are used, and
array size is automatically decided as 2, and if indexes larger than array size used to
access the array elements, arbitrary values are displayed.

{

#include <stdio.h>
int main()

int a[l = {3,60};

printf (
printf(
printf (

printf (
printf(

Code
8.8

, alo0l)
, alll);
, al551);

, allo);
, aleerl);

Output(s)

a[0] =3 a[l]=6 a[55]=0 a[l0] =4225392 a[867] = 826162750

8.4 Array Initialization Using Loops

Example 8.8 The size of an integer array equals 4% number of elements.

#include <stdio.h>

int main()

{
int a[l = {3,6,8,9};

printf("Size of a is :

$1u", sizeof(a));

Output(s) Sizeof ais: 16

8.4 Array Initialization Using Loops

179

Arrays can be initialized using loops; usually for-loops are used for the initialization

of the arrays.

Example 8.9 In this example, we first initialize the array and then print the array

elements.

#include <stdio.h>

int main()

{
float al[5];

{
a[i] = i*3.12;

}

{
printf (
}

for (int i = 0; i < 5;

for (int i = 0; 1 < 5; i++)

Code
8.10

i44)

. i, alil);

Output(s)
a[0] =0.0 a[l]=3.1

a[2] =62 a[3]=94 a[4]=125

180

8 Arrays

Example 8.10 Array elements can be initialized by the user-entered values.

#include <stdio.h>

int main()
{

int a[3]1;

for (int i = 0;
{
printf (
scanf (,

printf (

{
printf (
}

i

&a[i]);

for (int 1 = 0; 1 < 3;

i, alil);

Code
8.11

Output(s)

Please enter a[0]: 2
Please enter a[1]: 6
Please enter a[2]: 7

You entered:

a[0]=2 a[l]=6 a[2]=7

Example 8.11 In this example, the maximum value of all the array elements is

found.

#include <stdio.h>

int main()

{
int numbers[5] = { 123, 45
int maxNum = numbers[0];

for (int i = 1; 1 < 5; i++)
{

if (maxNum < numbers[i])
{
maxNum = numbers[i];
}
}

printf(

’ o, 349

,maxNum) ;

Code
8.12

8.4 Array Initialization Using Loops 181

Fig. 8.1 Typical memory Address Content
map for Example 8.12 a=100 ——> 100 78
101 56
0] 34 |
103 12
104 94
105 EF a[l]
106 CD
107 AB
Output(s)

The maximum of the numbers in the array is : 345

Example 8.12 In Code 8.13, we use hexadecimal numbers to initialize array
elements.

Code
#include <stdio.h> 8.13

int main()

{

int al[2];

[}
X
N

Each of the integers a[0] and a[l] are stored on 4-byte consecutive memory
locations. The letter “a” indicates the address of the first byte in the memory used
to store the first integer a[0]. For simplicity of explanation, let us assume that a=100,
which is the address of the first byte of a[0] stored into memory. In Fig. 8.1, the
storage of the integer bytes in consecutive register locations is illustrated. We
assumed that little-endian is used by the compiler.

Example 8.13 Array name indicates a register address, which is the starting address
of a block where array values are stored.

182 8 Arrays

Address Content Address Content
0x000000000065FE18| 0x78 0x65FE18| 0x78
0x000000000065FE19 | 0x56 a[0] 0x65FE19| 0x56 a[0]
0x000000000065FE1A| 0x34)) 0x65FE1A| 0x34
0x000000000065FE1B| 0x12 Omit leading zeros 0x65FEIB| (x12
0x000000000065FELC| 0x94 7 0x65FEIC| 0x94
0x000000000065FEID| (0xEF a[l] 0x65FE1D| 0xEF al]
0x000000000065FE1E| 0xCD 0x65FE1E| 0xCD
0x000000000065FE1F| 0xAB 0x65FEIF| 0xAB

Fig. 8.2 Memory map for Example 8.13
Code
#include <stdio.h> 8.14
int main()
{
int a[2];
[0] = 0x12345 ;
[1] = OxABCDEF94;
printf("al0] = n",al0l);
printf("all] = “xX\n",al[ll);
printf (" s (a) 1is : ",a); // 000000000065FE18 in my computer
printf (" re: ize i : 1" ,sizeof (a));
}
Output(s)

a[0] = 12345678

a[l1] = ABCDEF9%4

Adress (a) is : 000000000065FE18
Address size is : 8

In Fig. 8.2, memory map is explained for the array of Example 8.13.

Example 8.14 In this example, we define a character array and display its elements.
Array name is the address of storage block.

#include <stdio.h> Code
8.15

int main()
{

char a[3] = {'A",'b","c"};

printf("al0] = ",al0l);

printf("all] = 2c\n",al[l]);

printf("al2] = sc\n",al2]);

printf("Adress (a) is : %p \n",a); // 000000000065FEI1D in my computer

8.4 Array Initialization Using Loops 183

Output(s)
a[0] = A
a[l]=>b
a2l =c¢

Adress (a) is : 000000000065FE1D

Example 8.15 Characters are also 8-bit numbers. In this example, we show hexa-
decimal values of array characters and illustrate how they are stored in memory
(Fig. 8.3).

#include <stdio.h> Code
8.16
int main()
{
char a[3] = { ’ , }:
printf (,alol);
printf (,alll) s
printf(al21);
printf (,a); // 000000000065FE1D in my computer
printf (,al01);
printf(,alll);
printf (al21);
}
Output(s)
a[0] = A
a[l]=b
a2l =c
Adress (a) is : 000000000065FE1D
a[0] =41
a[l] = 62
a[2] =63
Fig. 8.3 Memory map for Address Content
Example 8.15 0x65FEID| ‘A’ 0x65FEID| 0x41

0x65FE1E ‘b’ —> O0x65FEIE| 0x62
0x65FE1F ‘c’ 0x65FE1F | 0x63

184

8.5 Strings as Array of Characters

8 Arrays

The array of characters terminated by a NULL character is called a string. The array
of characters terminated by a NULL can be printed using a for-loop or using the

format %s in printf() function.

Example 8.16 A string can be printed using a for-loop or using a printf() function.

#include <stdio.h> Code
8.17
int main ()
{
char a[] = (’ ’ ’ r };
for(int i = 0; i < 6; i++)
{
printf (, al[il):
}
printf (, a);
}
Output(s)

Hello Hello

If the array of characters is NOT terminated by a NULL, then it may not be

printed properly using the format %s in printf() function.

Example 8.17

#include <stdio.h> Code
8.18
int main()
{
char a[5] = { ’ ’ ’ ’ }i
for(int 1 = 0; 1 < 5; i++4)
{
printf (, alil) s
}
printf (, a);
}
Output(s)

Hello Hello%

8.6 Multidimensional Arrays 185

#include <stdio.h> Code
8.19

int main()

{

char al[6]

]
-~
<

’ ’ ’ 4 };

char b[6] ; // a equals to b
for(int i=0; i < 6; i++)

{ printf (, b[11);

}

printf (, a);

printf(, b))

Example 8.18 In this example, we define a string in two different ways.

The array of characters and the array of NULL terminated characters are two different concepts.
The latter one is the string, and for string manipulations, a number of built-in library functions
are available, and these functions do not work properly for the array of characters that are not
NULL terminated.

Output(s)
Hello Hello Hello

8.6 Multidimensional Arrays

A two-dimensional array is defined as
dataType arrayName[sizel] [size2];

and this array can be considered a single-dimensional array having sizel elements
each of which is an array having size2 elements of dataType.

arrayName [index1] [index2] ;

186

Example 8.19 A multidimensional array can
methods.

8 Arrays

be initialized in two different

#include <stdio.h>
int main()
{
int a[2]1[3] = { 10,),
int b[2]1[23]1 = {
{ /"‘I ’
{41‘1 7“[
}s
}

Code
8.20

In this example, both initialization methods assign the same values to the same

index locations.

Example 8.20 Nested for-loops can be used to initialize a multidimensional array.

#include<stdio.h> Code
8.21
int main()
{
int M =4, N = ;
int a[M][N];
for (int 1 = 0; i < M; i++)
{
for (int j = 0; j < N; j++)
{
alil[31 = 0;
}
}
}

Example 8.21 The multidimensional array elements can be displayed using nested

for-loops.

8.6 Multidimensional Arrays

)

i

)

<

’

20, , 4,
20, 87},
0 0}
2: it++)
J < 3; J++)

alillil);

2; 1t++)
J < 3; j++)

(D[11031) 5

Code
8.22

#include <stdio.h>
int main()
{
int a[2][3] = { ¢
int b[2]1[3] = {
}
for (int 1 = 0O;
{
for (int j
{
printf(
}
printf(
}
printf()
for (int i = 0;
{
for (int j
{
printf(
}
printf(
}
}
Output(s)
67 20 87
34 50 70
67 20 87
34 50 70

187

Example 8.22 The first dimension of a multidimensional array can be omitted. In
this case, the value of the first dimension is determined by the compiler regarding the

initialization data.

188 8 Arrays

#include<stdio.h> Code
8.23
int main()
{
int alll2] = {
{1,2},
{V:“/C}l
{5,6}
}i
// int b[1[2] = { {1,2}, {3,4}, {5,6} };
}

Example 8.23 Only the first dimension of a multidimensional array can be omitted,
all the other dimensions must be written.

#include<stdio.h> Code
8.24

int main()
{
int alll2] = { {1,2}, {3,4}, {5,6} };

int b[I1[1[2]1 = { { {1,2}, {3,4}, (5,6} },
{ {7,8y, (9,10}, {11,122} } };

// error: declaration of 'b' as multidimensional array must have bounds
// for all dimensions except the first

Example 8.24 Only the first dimension of a multidimensional array can be omitted,
all the other dimensions must be written.

#include<stdio.h> Code
8.25

int main()
{
int all[2] = { {1,2}, {3,4}, {5,6} };

int BIIEANI2] = £ { {1,2}, (
{7,810

12y y ¥y; // ok

8.7 Passing an Array to a Function in C 189
8.7 Passing an Array to a Function in C

Arrays can be used in function arguments. Function arguments contain array defi-
nition without the first dimension. Array names are solely used in function calls.

Example 8.25

#include <stdio.h> Code
8.26

void dispArray(double all)

int main()

{
double a[4] = {2.3, 5.6, 3.1, .35}
printf(, sizeof (a)/sizeof (double));

dispArray(a); // only array name is passed to the function call

}

void dispArray(double all])
{
for (int 1 = 0; 1 < 4; i++)
{
printf(i, alil);
}

Output(s)
Number of elements is : 4
a[0] =2.30 a[l]=5.60 a[2]=3.10 a[3]=12.35

If we use N-dimensional arrays at the inputs of the functions, except for the first
array dimension, all the other dimensions must be specified at the declaration of
functions.

190 8 Arrays

Example 8.26 In this example, the first dimension of the array is not written in
function arguments.

#include <stdio.h> Code
8.27
void dispArray(int a[l[3], int n) // first dimension is not used

{

for (int i = 0; i < n; i++)
{ for (int j = 0; § < 3; J++)
{ printf("sd ", a[ill3il):
} }
}
int main()
{ int alll31 = {{7, 8, 3}, {9, 2, 1}, {4, 0, 5}};
dispArray(a, 2);
}

Output(s) 7 8 3 9 2 1

Example 8.27 Dimensions of an array can be written separately in function
arguments.

#include <stdio.h> Code
8.28

int M = 3, N = 3;

void dispArray(int a[]l[N], int M, int N)

{ for (int i = 0; i < M; i++)

{ for (int j = 0; j < N; j++)

{ printf("sd ", alill3l);

} }
}
int main()
{ int alll31 = {{7, 8, 3}, {9, 2, 1}, {4, 0, 5}};
} dispArray(a, M, N);

Output(s)

783921405

8.7 Passing an Array to a Function in C

Problems
Input five integers from the user, store them in an array, and print them.
Write a program in C that inputs six integers from the user, stores them in an

1.
2.

[o BN o) RNV, B SOV

array, and prints them.

191

. Write a C program that calculates the sum of all elements of an integer array.
. Write a C program that finds the maximum number of a float array.

. Write a C program that calculates the frequency of each element of an array.
. Write a C program to sort the elements of the array in ascending order.

. Write a C program to find equal elements of an integer array.

. Initialize the array in Code 8.29 and print its elements.

#include <stdio.h>

int main()
{
float al[l0];

// initialize the array using for-loop
// and print the array elements

Code
8.29

9. Write a function that takes an array as its argument, reverses the elements of the

array, and returns it.

Chapter 9 ®)
Functions Chack or

9.1 Introduction

A C function is a set of statements written for a specific task enclosed by curly
braces. A function may return a value.
The syntax of a function is

returned data_ type function_ name (dataTypel varl, dataTypel varl, ...)
{

// statements

return value;

In Code 9.1, we show how to place the prototype and body of a function in a
program.

#include <stdio.h> Code
9.1

// function prototype
returned data_type function name (parmeter_ list);

int main()
{

// statements

}

// function implementation
returned data_type function name (parmeter list)

{
// function statements
}
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 193

O. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45361-8_9&domain=pdf
https://doi.org/10.1007/978-3-031-45361-8_9#DOI

194 9 Functions

Fig. 9.1 Explanation of the Function Input variables of
parts of a function Data type of the name the function

returned value i / \

float sum(float numl, float num2)

{
float result;
result = numl + num2;
return result;

}

Returned value

The body of the function can be placed before the main function as shown in
Code 9.2.

#include <stdio.h> Code
9.2

// function implementation
returned data_type function name (parmeter_ list)
{

// function statements

}

int main()

{

// statements

}

If a function is written after the main function, its declaration must be written
before the main function. The declaration of the function only contains the function
header. Its variable names can be omitted; however, variable data types have to be
written.

In Fig. 9.1, the structure of a function is explained.

The prototype, that is, declaration of the function, can be written either as

float sum(float numl, float num2);
or as
float sum(float, float);

[T L]

Note that semicolon “;” is used at the end of the function declarations.

9.1 Introduction 195

Example 9.1 Function definition can be written before the main part.

#include <stdio.h> Code
9.3

double mult(double a, double b)
{

double result;

result = a * b; // double result = a * b;

return result;

}
int main|()
{
double r = mult(3.14, 8.97);

printf ("Result is: $.21f", r);

Output(s) Result is: 28.17

Example 9.2 If the function definition is written after the main part, then the
prototype of the function should be written before the main part.

#include <stdio.h> Code
9.4

double mult(double a, double b); // function prototype
int main()
{

double r = mult(3.14, 8.97);

printf ("Result is: %.21f", r);

double mult(double a, double b)
{
double result;

result = a * b; // double result = a * b;

return result;

196

Example 9.3 In function prototypes, variable names can be omitted.

9 Functions

#include <stdio.h> Code

9.5

double mult(double, double); // function prototype

int main()

{ double r = mult(3.14, 8.97);
printf ("Result is: %.21f", r);

}

double mult(double a, double b)

{ return a * b;

}

Example 9.4 In this example, we write a function that finds the greater of two

integers. Integers are entered by the user.

#include <stdio.h>
int myMax(int x, int y);

int main()

int myMax(int x, int y)
{
if(x > y)
return x;
else if(x < y)
return y;

return -1;

{
int a, b, c;
printf ("Please enter two different integers : ");
scanf ("%d %d", &a, &b);
c = myMax(a, b);
if(c !'= -1)
printf ("The maximum of %d and %d is %d", a, b,
else
printf ("The numbers are equal to each other. ");
}

Code
9.6

c);

9.2 Types of Functions 197

Output(s)
Please enter two different integers: 8 11
The maximum of 8 and 11 is 11

9.2 Types of Functions

We do not need to write every function. Some of the functions are already written,
and they are called library or built-in functions. These functions are part of the
compiler and can be used directly. Some of the library functions are

exp(), pow(), sqrt()
To be able to use these functions, we need not know their prototypes. The
prototypes of the function can be found in the header file <math.h>, and the

prototypes are defined as

double exp(double x);
double pow(double x, double y);

double sqgrt(double x);
and these function are used to calculate the mathematical expressions
& X WV

Example 9.5 In this example, we use built-in functions exp, pow, and sqrt.

#include <math.h> Code
#include <stdio.h> 9.7

int main()

{

printf("%.31f ", exp(2.5));
printf("%.31f ", pow(,))
printf("%.31f ", sqrt(2.5));

}

Output(s)
12.182 3.291 1.581

The functions written by a developer are called user-defined functions.

198

9.3 Passing Parameters to Functions

Function parameter values can be supplied with two methods:

Pass-by value method
Pass-by reference method

9 Functions

Example 9.6 Function call by pass-by value is illustrated in this example.

#include <stdio.h>
void myFunc(int a,

int main()

{

int a =10, b

printf("a = %d
printf("b = %d
myFunc(a, b);

int b);

20;

", a);
", b);

Code
9.8

// function prototype

printf ("Before function call \n")

printf ("\n\nAfter function call \n")

printf("a = %d ", a);
printf("b = %d ", b);
}
void myFunc(int a, int b)
{
a=a+ 15;
b=Db+ 15;
}
Output(s)
Before function call
a=10 b=20

After function call
a=10 b=20

9.3 Passing Parameters to Functions

Example 9.7 Function call by pass-by reference is illustrated in this example.

#include <stdio.h>
void myFunc(int* x, int* y); // function prototype

int main()

Code
9.9

{
int a =10, b = 20;
printf ("Before function call \n") ;
printf("a = %d ", a);
printf("b = %d ", b);
myFunc (&a, &b);
printf ("\n\nAfter function call \n")
printf("a = %d ", a);
printf("b = %d ", b);
}
void myFunc(int* x, int* y)
{
*x = *x + 15;
*y = *y + 15;
}
Output(s)
Before function call
a=10 b=20

After function call
a=25 b=35

199

200 9 Functions

Example 9.8 Swapping can be achieved by reference call.

#include <stdio.h> Code
9.10

void swap(int* x, int* y);
int main()
{
int a = 34, b = 45;
printf ("Before swap operation : a = %d b = %d \n", a, b);

swap(&a, &b); // swap a and b

printf ("After swap operation : a = %d b = %d ", a, b);
}

void swap(int* x, int* y)
{

int £t = *x;

*x = *y;
*y = t;
}
Output(s)

Before swap operation: a = 34 b = 45
After swap operation:a =45 b =34

9.4 Returning More Than One Value

A function returns only a single value. However, two methods can be employed to
return more than one value. In the first method, global variables can be used. In the
second approach, we can use pointers to return more than one value.

Example 9.9 Global variables can be used inside a function to return more than one
value.

9.4 Returning More Than One Value 201
#include <stdio.h> Code
9.11

int a, b; // global variables
void myFunc(int x, int y);

int main()

{
int x =6, y=17;
myFunc(x, y);
printf ("Square of %d and %d are : %d and
}
void myFunc(int x, int y)
{
a = x*x;
b = y*y;

sd ", x, y, a, b);

Output(s) Square of 6 and 7 are: 36 and 49

Example 9.10 Pointers can be used in function arguments to return more than one

value.

#include <stdio.h>
void myFunc(int* x, int* y);

int main()

{
int x =6, y=7;
printf ("Square of %d and %d are
myFunc (&x, &y);
printf("%d and %d", x, y);
}
void myFunc(int* x, int* y)
{
*x = (*x) * (*x);
*y = (*y) * (*y);
}

Code
9.12

", X, ¥);

Output(s) Square of 6 and 7 are: 36 and 49

202 9 Functions

9.5 Recursive Functions

Recursive functions are self-calling function. In Code 9.13, the structure of a
recursive function is shown.

void myFunc () Code
{ 9.13
!/
myFunc () ;
/.
}

Recursive functions can contain conditional expressions before self-calling as in
Code 9.14.

void myFunc() Code
{ 9.14
//

if (condition)
myFunc () ;

/..

Example 9.11 Let us write a recursive function that displays the integers
a a—1 a-2...0

We will use a = 6 to test the recursive function. First, we write Code 9.15.

void countDown (int a) Code
{ 9.15
printf("3d ", a);

}

In the second step, we add the self-calling and decrement statements as in Code
9.16.

9.5 Recursive Functions

void countDown (int a) Code
{ 9.16

printf("%sd ", a);
a--;

countDown (a) ;

The conditional part for self-calling is added as in Code 9.17.

void countDown (int a) Code
{ 9.17

printf("%d ", a);
a--;

if (a >= 0)
countDown (a) ;

The recursive function can be tested inside a main function as in Code 9.18.

#include <stdio.h> Code
9.18

void countDown (int a);

int main()

{
countDown (0) ;
}
void countDown (int a)
{
printf("%d ", a);
a--;
if (a >= 0)
countDown (a) ;
}

Output(s) 6543210

203

204

9 Functions

Example 9.12 Factorial of integers can be calculated using a recursive function.

Output(s)

Enter a: 4
24

Code

#include <stdio.h> 9.19

int myFactorial (int a);

int main()

{

int

int a;

printf ("Enter a : ");

scanf ("%d", &a);

int result = myFactorial (a);

printf ("%d", result);

myFactorial (int a)
int r;

if (a > 0)

{

r = a * myFactorial(a - 1);
return r;

}
else if(a == 0)
{
return 1;
}

The function myFactorial can be written in a compact form as in Code 9.20.

{
}

return ((a == 1

int myFactorial (int a)

|| == 0) ? 1 : a * myFactorial(a - 1));

Code
9.20

9.6 Nested Functions

9.6 Nested Functions

205

A function may be defined inside another function. Some compilers may support

nested functions.

#include <stdio.h>

Code
9.21

void myFuncl() ;

int main()
{

myFuncl () ;
}

void myFuncl ()

{
printf("Inside MyFuncl \n");

void myFunc2 ()

{
printf ("Inside MyFunc2 \n");
}

myFunc2 () ;

Output(s) Dev-C++ compiler for a C project gives the outputs

Inside MyFuncl
Inside MyFunc2

Problems

1. Write a C function that takes two integers and swaps their values.

2. Write a C function that finds the largest element of an array and returns it.

206

9 Functions

3. Write a C function that determines whether an integer is a prime number or not.

4. What is the output of Code 9.22?

#include <stdio.h>
void myFunc(int* x, int* y);

int main()

{
int x = 13, y = 67;
myFunc (&x, &y);
printf ("%d and %d", x, y);
}
void myFunc(int* x, int* y)
{
*x = (*x) + (*x);
*y = (*x) + (*y) - 5;
}

Code
9.22

5. Using pass-by reference method, write a C function that takes three integers and

replaces each number by its square.

Chapter 10)
Pointers P

10.1 Definition

Pointers are data types that are used to keep the address of memory locations where
values of other variables are stored. A pointer variable is defined as

dataType* ptr;

where dataType can be any built-in data types available in C, such as int, float,
double, struct, etc.

10.2 Address of a Variable

The address of a variable can be obtained using the & operator. For instance, the
address of variable a in

inta=10;

is obtained using &a, and the content of the address is obtained using the
dereferencing operator *, that is,

*address = content of the address;
For instance, if

inta=10;

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 207
O. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45361-8_10&domain=pdf
https://doi.org/10.1007/978-3-031-45361-8_10#DOI

208 10 Pointers

then

* (&a) equals 10

Example 10.1 In this example, address and dereferencing operators are used
together.

#include <stdio.h> Code
10.1

int main()

{

int a = 10;

printf(, *(&a));

Output(s) a= 10

Example 10.2 Integers are 4-byte numbers. In this example, the storage address of
an integer is displayed. Little-endian storage type is assumed.

#include <stdio.h> Code
10.2

int main()

{

int a = 0x1245A78F; // 4-byte integer value

int* ptr = &a;

printf (, a);
printf (, &a);
printf (, ptr);

Output(s)

Value of a is = 1245A78F

Address of a is = 65FE14

Pointer value is = 000000000065FE14

It is seen from the above memory map that address of a or pointer value is the
value of memory address where the least significant byte (little-endian) of the integer
a is stored (Fig. 10.1).

10.2 Address of a Variable

Fig. 10.1 Address and
content relations of
Example 10.2

Fig. 10.2 Address and
content relations of
Example 10.4

209

Address
ptr=&a=0x000000000065FE 14
0x000000000065FE15
0x000000000065FE16
0x000000000065FE17

Content
0x8F
0xA7 a
0x45
0x12

Address
ptr=0x000000000065FE 14
0x000000000065FE15
0x000000000065FE16
0x000000000065FE17

Content
0x8F
0xA7
0x45
0x12

a=*ptr

Example 10.3 Pointer is a data type, and its size can be calculated using the sizeof

operator.

#include <stdio.h>

int main()

{

int a = 0x1245A78F;
int* ptr = &a;

printf(

printf(

Code
10.3

, ptr);

, sizeof (ptr));

Output(s)

Pointer value is ptr = 000000000065FE14

Sizeof pointer variable is: 8

Example 10.4 Pointed address has content, and the content can be read by

dereferencing operator (Fig. 10.2).

#include <stdio.h>

int main ()

{
int a = 0x1245A78F;
int* ptr = &a;

printf(

printf(

Code
10.4

, ptr);

,ptr, *ptr);

210

Output(s)

Pointer value is ptr = 000000000065FE14

Value at address ptr = 000000000065FE14 is *ptr = 1245A78F

10

Pointers

Example 10.5 Pointer data type is used for addresses, that is, pointers hold
addresses, and these address values are stored in registers that have addresses as

well (Fig. 10.3).

#include <stdio.h> Code
10.5
int main()
{
int a = 0x1245 'y
int* ptrl = &a;
int* ptr2 = &ptrl;
printf(, ptrl);
printf (, ptr2);
}
Output(s)
Pointer value ptrl = 000000000065FE14
Pointer value ptr2 = 000000000065FE08
Address Content
ptr2=0x000000000065FE08| 0x14
Address /7 Content 0x000000000065FE0S] _0xFE
ptr1=0x()0 0000000065FE 14 0X8F 0x000000000065FEO0A 0x65
0x000000000065FELS] 0xA7 |, — #pqr 0x000000000065FEOB] _ 0x00 | | ptr1=*ptr2
0x000000000065FE16| 0x45 0x000000000065FE0C] 0x00
0x000000000065FE17] 0x12 0x000000000065FEOD] _ 0x00
0x000000000065FEOE| 0x00

Fig. 10.3 Visual illustration of Example 10.5

10.2 Address of a Variable 211

Example 10.6 A pointer can point to the address of another pointer.

#include <stdio.h> Code
10.6
int main()
{
int a = 0x1245A78F;
int* ptrl = &a;

int* ptr2 = &ptrl;

int* ptr3 = &ptr2;

printf(, ptrl);
printf (, ptr2);
printf (, ptr3);

Output(s)

Pointer value ptrl = 000000000065FE14
Pointer value ptr2 = 000000000065FE08
Pointer value ptr3 = 000000000065FE00

Pointed addresses and stored values are shown in (Fig. 10.4)

Address Content

ptr2=0x000000000065FE08] 0x14

Address Content 0x000000000065FE09] 0xFE

ptr1=0x000000000065FE14| 0x8F 0x000000000065FE0A] 0x65
0x00000000006SFEIS| 0xA7 ||, = o1 0x000000000065FEOB| 0x00 | |ptr1=*ptr2

0x000000000065FE16] 0x45 0x000000000065FE0C] 0x00

0x000000000065FE17| 0x12 0x000000000065FEOD| 0x00

0x000000000065FEOE[_ 0x00

Address Content
ptr3=0x000000000065FE0] 0x08
0x000000000065FEOL| 0xFE
0x000000000065FE02| 0x65
0x000000000065FE03| 0x00 ptr2=*ptr3
0x000000000065FE04| 0x00
0x000000000065FE05| 0x00
0x000000000065FE06(0x00

Fig. 10.4 Visual illustration of Example 10.6

212 10 Pointers

Example 10.7 In this example, the second pointer points to the first pointer.

#include <stdio.h> Code
10.7

int main()

{

int a = 0x

int* ptrl &a;

int* ptr2 = &ptrl;

printf (, ptrl);
printf(, ptr2);
printf (,*ptr2);

Output(s)

Pointer value ptrl = 000000000065FE14
Pointer value ptr2 = 000000000065FEO8
*ptr2 = 000000000065FE 14

Property
Let

dataType a;
dataType* p=&a

If the value of p is v, then the value of p+1 is

v+sizeof (dataType)

10.2 Address of a Variable 213

Example 10.8 If ptr is a pointer pointing to an integer variable, the value of ptr+1 is
4 more than the value of ptr.

#include <stdio.h> Code
10.8
int main()
{
int a = 0x1245A78F;
int* ptr = &a;
printf (, ptr);
printf (, ptr+l);
// value of ptr+l is 4 more than value of ptr
}
Output(s)

Value of ptr = 000000000065FE14
Value of ptr+1 = 000000000065FE18

Example 10.9 If ptr is a pointer pointing to a long-long integer variable, the value
of ptr+1 is 8 more than the value of ptr.

#include <stdio.h> Code
10.9

int main()
{
long long int a = 0x1245A78F1245A78F;

long long int* ptr = &a;
printf (, ptr);

printf (, ptr+l); // ptr+l is 8 more than ptr

Output(s)

Value of ptr = 000000000065FE10
Value of ptr+1 = 000000000065FE18

214

10 Pointers

Example 10.10 If ptr is a pointer pointing to a char variable, the value of ptr+1 is

1 more than the value of ptr.

#include <stdio.h>

int main()

{
char a = ;
char* ptr = &a;
printf (

printf (

printf(

, Ptr);

Code
10.10

, ptr+l);

, *ptr);

Output(s)
Value of ptr = 000000000065FE17

Value of ptr+1 = 000000000065FE18

Value of *ptris A

Example 10.11 We can use pointers to change the value of a variable.

#include<stdio.h> Code
10.11
int main()
{
float a 8;
float* ptr = &a;
*ptr = (*ptr) * 3.8 + 4.7;
printf(, a);

Output(s)
a = 22.940001

10.4 Void Pointer 215
10.3 NULL Pointer

A pointer having no address value is called a NUL pointer. NULL pointers can be
obtained assigning NULL value to the pointer. If a pointer is not initialized to NULL
value, it may have an arbitrary value, and it may be dangerous to assign a value to
pointer arbitrarily.

Example 10.12 It is better convention to initialize the pointers.

#include <stdio.h> Code
10.12

int main()

{
int* ptrl;

int* ptr2 = NULL;

printf(, ptrl);//this is an arbitrary value
printf(, ptr2);
}
Output(s)

Pointer value ptrl = 00000000007213A0
Pointer value ptr2 = 0000000000000000

10.4 Void Pointer

Void pointer is also called generic pointer. Its pointer data type can be changed.

Example 10.13 The size of void pointer can be obtained using the sizeof operator.

#include <stdio.h> Code
int main() 10.13
(void* vp = 0; // or void* ip = NULL;
printf (, sizeof(vp));
printf(, Vp)
}

216

Output(s)
sizeof (void*) is 8
vp = 0000000000000000

Example 10.14 Void pointers can point to any variable.

10 Pointers

#include <stdio.h>
int main()
{
int a = 0x12345678;
void* vp = NULL;
printf ();
printf (, Vp);
vp = &a;

printf ()
printf (, vp) ;

Code
10.14

printf(, sizeof (vp));

printf(, sizeof (vp)):;

//printf ("a = %x", *vp); // gives error

Output(s)

Before assignment

sizeof (void*) is 8

vp = 0000000000000000

After assignment
vp = 000000000065FE14
sizeof (void*) is 8

10.4 Void Pointer 217

Example 10.15 Void pointers can point to any data type, but casting must be used
to print the value of the pointed data.

#include <stdio.h> Code
10.15

int main()
{

EL7Q .

int a = 0x12345678
void* vp = NULL;

printf () ;
printf (, sizeof(vp));
printf (, VP) s

vp = &a;

printf ()

printf(, Vp);

printf (, sizeof (vp));
//printf ("a = %x", *vp); // gives error

printf ()

printf(, sizeof ((int*)vp))
printf(, (int*)vp);

printf (, *(int*)vp);

Output(s)

Before assignment

sizeof (void*) is 8

vp = 0000000000000000

After assignment
vp = 000000000065FE14
sizeof (void*) is 8

If casting is used

sizeof (int*) is 8

vp = 000000000065FE14
a = *vp = 0x12345678

218

10 Pointers

Example 10.16 The address pointed out by void pointer can be changed. Explicit
type conversion should be done to print the value of the pointed variable.

Output(s)

#include <stdio.h>

int main()

{

int a =
char b = ;
= NULL;

void* vp

vp = &a;
printf (

vp = &b;
printf(

0x12345678

Code
10.16

, *(int*)vp);

+ *(char*)vp);

a = *vp = 0x12345678

:*Vp:k

Example 10.17 The default increment amount for void pointer is 1; however, when
void pointer is converted to any other pointer type, increment amount changes
depending on the pointed data type.

Output(s)
No casting:

#include <stdio.h>

int main()

{

int a =
void* vp = NULL;
vp = &a;

printf (
printf (
printf(

printf (
printf(
printf (

0x12345678

);

; VP)

’

, vptl);

(int*)vp) ;
¢, (int*)vp+l);

Code
10.17

10.4 Void Pointer 219

vp = 000000000065FE14
vp+1 = 000000000065FE15

If (int*) casting is used:
vp = 000000000065FE14
vp+1 = 000000000065FE18

Example 10.18 Void pointer can be converted to any other pointer type by explicit
conversion.

#include <stdio.h> Code
10.18

int main ()

{
int a = 0x12345678;
long long int b = 34.5;
double d = 45.67;

void* vp = NULL;

vp = &a;

printf ("Int pointed, No casting:\n");
printf ("v: sp\n', vp);
printf ("vp+l = Sp\n\n"

vp+l) ;

printf("If (int*) casting is used:\n");
printf("vp = % , (int*)vp) ;
printf ("vp = Sp\n\n", (int*)vp+l);

AT

vp = &b;

printf("Long long integer is pointed, No casting:\n");
printf("vp = %p\n", vp);

printf ("vp+l = Sp\n\n", vp+l);

printf ("L (long long int*) casting is used:\n");

printf("vp = %p\n", (long long int*)vp);
printf("vp+l = Sp\n\n", (long long int*)vp+l);
vp = &d;

printf("Double is pointed, No casting:\n");
printf("vp = %p\n", vp);

printf("vp+l = Sp\n\n", vp+l);

printf("If (double*) casting is used:\n");
printf("vp = %p\n", (double*)vp);

printf ("vp+l = Sp\n\n", (double*)vp+l);

printf("Sizeof double is %lu.\n", sizeof (double));

220 10 Pointers

Output(s)
Integer is pointed, No casting:

vp = 000000000065FE14
vp+1 = 000000000065FE15

If (int*) casting is used:

vp = 000000000065FE14
vp+1 = 000000000065FE18

Long long integer is pointed, No casting:

vp = 000000000065FEO8
vp+1 = 000000000065FEQ09

If (long long int*) casting is used:

vp = 000000000065FE08
vp+1 = 000000000065FE10

Double is pointed, No casting:

vp = 000000000065FEQ0
vp+1 = 000000000065FEO01

If (double*) casting is used:

vp = 000000000065FE00
vp+1 = 000000000065FE08

Sizeof double is 8.

Example 10.19 Using void pointer, it is possible to get read value at any memory
location (Fig. 10.5).

Fig. 10.5 Visual Address Content
lll(l)uitgrauon of Example vp=&a=0x000000000065FE0C | 0x78

0x000000000065FEOD| 0x56
cp=vp+2=0x000000000065FEOE| 0x34 <> *cp
0x000000000065FEOF| 0x12

)

10.5 Types of Pointers

221

{

#include <stdio.h>

int main()

int a = 0x12345678;

void* vp = NULL;

vp = &a;

printf(

printf(, VP);
char* cp =(char*) (vp+2) ;
printf(, Cp);

printf (
printf(, *cp);

Code
10.19

, Vp+2);

Output(s)

Integer is pointed, No casting:
vp = 000000000065FE0C

cp = vp+2 = 000000000065FEOE
The value at position vp+2 is 34

10.5 Types of Pointers

10.5.1 Pointer to a Constant Value

A pointer to a constant value is defined as

const dataType* ptr;

The data pointed by the pointer is a constant and its value cannot be changed. The
pointer can change the pointed variable, that is, the pointed address may be changed
but the content of the address cannot be changed.

222 10 Pointers

Example 10.20 If address content is constant, it cannot be changed.

#include <stdio.h> Code
10.20

int main()

{

int a 5;

int b = 67;

const int* ip = &a; // ok, point to the address of a

*ip = 40; // error, address content cannot be changed, it is constant

ip = &b; // ok, pointed address can be changed

*ip = 67; // error, address content cannot be changed

Pointers to constant values are usually employed in function arguments to prevent
the accidental change of the values used in function calls.

Example 10.21 Constant variable value can be changed by a pointer. Compare
Code 10.20 with Code 20.21.

#include <stdio.h> Code
10.21
int main()
{
const int a = 45;
printf("a = %d \n", a); // a = 45
int* ip = &a; // ok, point
*ip = 89; // ok
printf("a = %d \n", a); // a 89
}
Output(s)

a=45
a=289

10.5 Types of Pointers 223

Example 10.22 Function arguments can contain pointers to constant values.

#include <stdio.h> Code
10.22

int myFunc(const int* ip)

{
int b = *ip+2; // ok

*ip = *ip+2; // error

return b;

}
int main()
{

int a = 10, d;

d = myFunc (&a) ;

10.5.2 Pointer to a Constant Address (Constant Pointer)

The pointer points to a constant memory address, and the value at that address can be
changed because it is a variable, but the pointer can only point to the same address
and the pointed address cannot be changed. The syntax of the constant pointer is

dataType* const ptr = &varName

Note that initialization has to be performed when constant pointer is declared.

Example 10.23 For constant address pointers, the pointed variable cannot be
changed.

#include <stdio.h> Code
10.23

int main()

{

int a =) ;

int b 67;

int* const ip = &a; // ok, point to the address of a
*ip = 40; // ok, content can be changed

ip = &b; // error, address is constant, it cannot be changed

224 10 Pointers

Example 10.24 For constant address pointers, initialization must be done when
pointer is defined.

#include <stdio.h> Code
10.24

int main()
{
int a = 45;

int* const ip; // initialization must be done here

ip = &a; // error, initialization should be done in the previous line

10.5.3 Constant Pointer to a Constant Value
A constant pointer to a constant value is defined as

const dataType* const ptr = &varName

Example 10.25 For constant address, constant value pointers, neither pointed
address nor content of the address can be changed.

#include <stdio.h> Code
10.25

int main()

{

int a = 45, b = 67;

const int* const ip = &a; // initialization must be done here
*ip = 98; // error, content can not be changed
ip = &b; // error, address can not be changed

10.6 Function Pointers

Variables are stored in memory locations and each variable has a memory address;
similarly instructions of a function are stored in memory and each function has an address.

The name of an array is a pointer to the head of the memory address where array
values are stored. The name of a function is a pointer to the memory address where
function instructions are stored.

10.6 Function Pointers 225

Example 10.26 Function and array names are also pointers.

#include <stdio.h> Code
10.26

void myFnc ()

{
printf()
}
int main()
{
int a = ;
int b[3] = {3,5,6};
printf(, &a);
printf (, b);
printf (, myFnc) ;

printf (, &myFnc); // second method

Output(s)

Address of a = 000000000065FE1C

Address of array b = 000000000065FE10
Address of the myFnc() = 0000000000401560
Address of the myFnc() = 0000000000401560

Syntax of Function Pointer in C
The syntax of the function pointer is

returnedDataType (*PointerName) (argumentl, argument2, ...);
For example, for the function declaration
int myFunc (int, int) ;
a function pointer in C can be defined as
float (*fncPointer) (int, int) ;
and function address is assigned to the pointer using either
fncPointer= myFunc

or

226 10 Pointers
fncPointer=&myFunc

and the function is called using the function pointer using either

fncPointer (intVall, intval2) ;
or

(*fncPointer) (intVall, intVal2) ;

Example 10.27 This example illustrates the use of the function pointers.

#include <stdio.h> Code
10.27

int mySum(int a, int b)
{

return a+b;
}
int main()
int a = 34, b = 65, sm;

int (*fp) (int, int); // define a function pointer

fp = mySum; // assign function address to the function pointer,
// alternative assignment is fp=&mySum

sm fp(a, b); // or use sm = (*fp) (a, b);

printf (, a, b, sm);

Output(s)
Sum of the integers 34 and 65 is 99

Example 10.28 Explain the prototype
void* (*func_ptr) (int *, int *);

We should inspect such statements inside out. Here,
(*func_ptr) (int *, int *)

is a function pointer taking two inputs, which are integer pointers, and the return
expression

void*

is a void pointer

10.6 Function Pointers 227

Example 10.29 It is possible to define an array of function pointers.

#include <stdio.h> Code
10.28

int mySum(int a, int b){ return a+b;}
int mySubt(int a, int b){return a-b;}
int myMult(int a, int b) {return a*b;}

int main()
{

int a = 34, b = 65, sm, df, ml;

int (*fp[3]) (int, int); // define an array of function pointers

fp[0] = mySum;//assign mySum function address to the function pointer
fp[l] = mySubt;//assign mySubt function address to the function pointer
fp[2] = myMult;//assign myMult function address to the function pointer
sm = fp[0](a, b);
df = fp[l]l(a, b);
ml = fp[2](a, b);
printf(, &, b, sm);
printf (, a, b, df);
printf(, a, b, ml);
}
Output(s)

a=234b=065,a+b =99
a=34b=265 a-b=-31
a=34b =65, a*b = 2210

Example 10.30 Functions can have function pointers in their arguments, and
function names can be passed for function pointers.

#include <stdio.h> int main()
{
void myFuncl () callFunc (myFuncl) ;
{ callFunc (myFunc?2) ;
printf () }
}
void myFunc2 ()
{
printf ()
}
void callFunc(void (*fp) ())
{

fp(); Code
} 10.29

Output(s)
Inside function-1
Inside function-2

228 10 Pointers

Example 10.31 In this example, we define a function pointer in main function and
pass it to a function whose arguments involve a function pointer.

#include <stdio.h> Code
10.30
int squaredSum(int a, int b, int (*£fp) ())
{
int sgSum;
sqSum = fp(a*a, b*b);
return sgSum;
}
int mySum(int a, int b)
{
return a+b;
}

int main()
int a =5, b =4, sm;
int (*£p) (int, int); // define a function pointer

fp = mySum; // assign function address to the function pointer,

int res = squaredSum(a, b, fp); // call the function squaredSum
printf(, a, b, res);
}
Output(s)

Squared sum of the integers 5 and 4 is 41.

10.6.1 Functions Returning Pointers

Pointer is a data type, its size is 8. Function can return pointers as returned values.

Example 10.32 Pointer values are addresses, and a function can return an address
of a global variable.

10.6 Function Pointers

#include <stdio.h> Code
10.31

int a = 18; // global variable

int* myFunc/()

{
return (&a);
}
int main ()
{
int* ptr;
ptr = myFunc() ;
printf (, ptr); // ok
printf (, *ptr); // ok
}
Output(s)

Pointed address is 0000000000403010
Value at address is 18

229

Example 10.33 Local variables inside a function are destroyed when function is

terminated. Returning local variable addresses creates a problem.

#include <stdio.h>
int* myFunc()

{

int a = 18;// local variable

int main()
int* ptr;

ptr = myFunc();

Code
10.32

return (&a);// local variables are destroyed, when function is quitted

printf(, ptr); // wrong output
printf (, *ptr); // no output
}
Output(s)

Pointed address is 0000000000000000

warning: function returns address of local variable [-Wreturn-local-addr]

230

10 Pointers

Example 10.34 Functions can be called by pass-by value method. In this case, the
values in the function arguments can be considered local variables inside function.
Returning the address of argument values creates a problem.

#include<stdio.h>

int main()
{
float a = .6, b= .87

float* larger num;

printf(
}

{

if (*c > *d)
{
return c;

}

else
return d;

float* findLarger(float*, float¥);

larger num = findLarger (&a, &b);

float* findLarger (float* c, float* d)// pass by value is used here

Code
10.33

, a, b, *larger num);

// ¢ and d can be considered as local
// variables

Output(s)

warning: function returns address of local variable [-Wreturn-local-addr]

10.7 Pointers and Arrays

Pointers and arrays are closely related to each other. Array names can be considered
constant pointers pointing to the first element of the array.

10.7 Pointers and Arrays 231

Example 10.35 A string itself indicates a constant address in memory.

#include<stdio.h> Code
10.34

int main()

{
char* a =
printf(ra);
printf(,&a) ;

printf (p)

printf(;&)7

Output(s)
a is 0000000000404000
&a is 000000000065FE18

Constant address is 0000000000404000
&Constant address is 0000000000404000

In the expression char* a, the letter a indicates an address, and the assigned

value should be an address, thus the string on the right-hand side of
char* a= 7 ; is also an address.
The constant on the right-hand side of char* a= 7 ; is stored on the

code memory.
On the other hand, the pointer variable “a” is stored on the stack memory.

Example 10.36

#include<stdio.h> Code
10.35

int main()

{
char* a = ;
char b[6] =

printf(,sizeof (a));

printf(,sizeof (b)) ;

232 10 Pointers

Output(s)
Size of ais 8
Size of bis 6

In this example, “a” is a pointer, its size is 8, and “b” is an array variable, its size is
6, that is, it is an array of six characters.

Example 10.37

#include<stdio.h> Code
10.36
int main()
{
char* a = "Hello";
char b[6] = "Hello";
printf("Size of a is %$lu \n",sizeof(a));
printf("Size of b is %1lu \n",sizeof (b))
printf("b is %p \n", b);
printf("sb is %p \n", &b);
printf("Size of &b is %lu \n",sizeof(&b)) ;
}
Output(s)

Size of a is 8

Size of bis 6

b is Ox7ffeb161d182
&b is 0x7ffeb161d182
Size of &b is 8

In this example, we see the strange sides of C compilers. Although the size of b is
6, it can be displayed as pointer. b and &b have the same values. The size of &b is 8.

10.7 Pointers and Arrays 233

Example 10.38 Array name is a constant pointer, its value is constant, and it cannot
be modified.

#include<stdio.h> Code
10.37
int main()
{
char* a = ;
char b[6] = ;
printf (,a); // ok
printf(,++a); // ok
printf (,++b); // error

Example 10.39 A string can be considered an address. It cannot be assigned to an
array name. Since array name is a constant address, it cannot be changed.

#include<stdio.h> Code
10.38
int main()
{
char* a = ;
char b[6] = ;
a = ; // ok
b = ; // error
}

Example 10.40 In this example, we explain the differences between a character
array and a character pointer initialized with a string.

10 Pointers

234
#include<stdio.h> Code
10.39
int main()
{
char* a = "Hello";
const char* al = " "y
char b[6] = "Hello";
char C[V] = {l:{!,l;!,li!,li!,lrvrl ;‘v}’.
printf (" n",a, b, c);
// all]l = 'A'; // Does not work
b[1] = 'A'"; // ok
c[1l] = 'A"; // ok
printf (" s",a, b, c);
}
Output(s)
Hello Hello Hello
Hello HAllo HAllo

Differences between char* a="Hello"

and char b[]="Hello"

char* a="Hello";

a is a pointer

pointer size is 8

a and &a are different

a is at the stack memory but "Hello" is
stored at the code section of memory

a="Hallo" is valid also an address

a++ is valid

only memory

a[1]='A’ is invalid, code section is read-

char b[]="Hello";

b is a variable name for an array
sizeof(b) is 6

b and &b are the same

"Hello" is stored in the stack

b="Hallo" is not valid

b is an address and string constant is
also an address

b++ is invalid

b[1]="A" is valid

10.7 Pointers and Arrays 235

Example 10.41 Array names are constant pointers. They can be assigned to
nonconstant pointers.

#include<stdio.h> Code
10.40

int main()
{
int a[l = {41, 25, 38, 47, 58} ;

int* ptr = a;

printf (, ptr[2], *(ptr + 2));

Output(s) 38, 38

Example 10.42 We can use pointers to access array elements.

#include<stdio.h> Code
10.41
int main ()
{
int a[3] = {1,2,3};
int* b;
b = a;
printf(,b[0T,\
b[1], bI2]);
}

Output(s) b[0]=1 b[l]=2 b[l]=3

Example 10.43 Although array name behaves as a pointer, its size depends on the
number and types of its elements.

#include<stdio.h> Code
10.42

int main()

{
int all

[
~
<
<
-
N

int* ip

I
)

printf(, sizeof(a))

printf (, sizeof(ip));

236

Output(s)
Size of a[] is 12
Size of ip is 8

10 Pointers

Example 10.44 Array names behave as constant pointers.

#include<stdio.h>

int main()
{
int all
int* ip
a = &b;

a = ip;

= {3, 4, 5}, b = 23;
= &b; // ok

// error

// error

Code
10.43

If a is an array name, ptr is a pointer, and ptr=a, array elements can be accessed

using one of

afi]"(a+1)

where i is the index value.

ptr[i]* (ptr + 1)

Example 10.45 Array elements can be accessed in different ways.

int main()

{
int a[] = {Z

printf(
printf(
printf (
printf(

printf(

int* ip = a;

#include<stdio.h>

Code
10.44

, al0l, alll, al2l);
, *a, *(atl), *(a+2));
, ipl01, ipl[l]l, ipl21);

, *ip, *(ip+l), *(ip+2));

Output(s)
Array elements are

a[l0]=3 a[l]=4 a[2]=5
a[l0]=3 a[l]=4 a[2]=5

10.8 Multiple Pointers 237

a[l0]=3 a[l]=4 a[2]=5
a[l0]=3 a[l]=4 a[2]=5

10.8 Multiple Pointers

It is possible to define a pointer that points to another pointer.

Example 10.46 In this example, we explain the use of multiple pointers.

#include <stdio.h> Code
10.45

int main()

{

int a = 0xABCD;
int* ipl, ** ip2, *** jip3;

/* int* ipl;
int** ip2;
int*** ip3; */

ipl
ip2
ip3

&a;
&ipl;
&ip2;

printf (, ipl);
printf (, ip2);
printf (, 1ip3):

printf (, *ip3);
printf (, **ip3);
printf (, *¥**ip3);

Output(s)

Pointer value ipl = 000000000065FE14
Pointer value ip2 = 000000000065FEO08
Pointer value ip3 = 000000000065FE00

*ip3 = 000000000065FE08
**ip3 = 000000000065FE14
*#*ip3 = ABCD

The relationships between addresses are explained in Fig. 10.6.

10 Pointers

Address Content

0xCD

238

Address Content/\ Address Content,
ptr3=0x000000000065FE00 ptr2=0x00000000006SFEOS] 0x14 ptri=0x000000000065FE 14

0x000000000065FEO1 0x000000000065FE09 | 0xFE

0x000000000065FEOA| 0x65

*ptr3=ptr2 0x00 *ptr2=ptrl

0x00 0x00

0x00 0x00

0x00 0x00

Fig. 10.6 Visual illustration of Example 10.46

O0xAB

0x00
0x00

a=*ptrl

Example 10.47 A pointer pointing to another pointer holds the address of another

pointer.

#include <stdio.h>

int main()

{
int a = 36;
int* ipl, ** ip2, ***
ipl = &a;
ip2 = &ipl;
ip3 = &ip2;
printf ("
printf("P
printf("Poir

printf ("ucp

printf ("> 5. 2%\
ucp++;
printf ("ucpt+ = "

sp\n

A1\

printf ("*uc

ucp++;
printf("u
printf ("*u

unsigned char* ucp=(unsigned

Code
10.46
ip3;
= Zp\n", ipl);
= Sp\n", 1ip2);
e = %p\n\n", ip3);

char*) ip3;

o\n'", ucp);

n\n", *ucp);

; ucp) ;
n'", *ucp);

, ucp) ;
n\n", *ucp);

\

10.9 Heap Stack and Code Memories

Output(s)

Pointer value ipl = 000000000065FE0C
Pointer value ip2 = 000000000065FE00
Pointer value ip3 = 000000000065FDF8

ucp = 000000000065FDF8

*ucp = 00

ucp++=000000000065FDF9

*ucp = FE

ucp++ = 000000000065FDFA

*ucpt++ =65

239

Exercise Draw the memory maps for this example and show the relationships

between pointers.

10.9 Heap Stack and Code Memories

The variables, functions, instruction codes, and dynamically created variables are
stored in different parts of the memory. In Fig. 10.7, different parts of the memory

and their relations to code parameters are explained.

In the sample code in Fig. 10.8, it is illustrated that dynamic allocation is
performed in the heap section of the program memory.

Example 10.48 In Code 10.47, all these variables are stored on stack.

int main()

{
int a;
int b[6];

double d =
float e;
int* p;

Code
10.47

int ¢ = ;

Example 10.49 In Code 10.48, memory allocation is performed for five double

numbers on the heap.

int main()

{
}

double *dp = malloc(S*sizeof (double));

Code
10.48

240

Stack segment is
used to store the
local variables,
function
parameters

Data segment is used
to store global
variables, separated
into initialized and
uninitialized sections

Low address —»

Stack

f

Heap

Uninitialized data

Initialized data

Text (Code) segment

OS Kernel

Fig. 10.7 Heap stack and code memories

#include <stdio.h>

int main()

{

int* ip=malloc(sizeof (int));

double* dp=malloc(”*sizeof (double));

*ip=45;

dp[

dp[1

1=34.5;

1=67.8;

10 Pointers

-+—— High address

Heap segment is
used for dynamic
memory allocation

The text sement contains
instruction codes. This is
read-only memory.

Stack
int* ip Heap
double* dp
int ¢
double
double

Fig. 10.8 Dynamic memory allocation

10.10 Dynamic Memory Allocation

There are four functions provided by C language to perform dynamic memory
allocation operations; these functions are defined in the header file <stdlib.h> as

follows:

malloc ()

calloc()

free ()

realloc()

10.10 Dynamic Memory Allocation 241

10.10.1 malloc() Function

The malloc() function is used as
dataType* ptr = (dataType*) malloc(total-size to be allocated)
The allocation is performed in the heap memory. When the expression
int* ip = (int*) malloc(* sizeof (int));

is performed, a total of 20 x 4 bytes = 80 bytes are allocated in the heap memory.
Note that each integer requires 4 bytes of memory location. For 20 integers, a total
size of 80 bytes is allocated.

In C11, aligned_alloc function is defined as

void* aligned alloc(size_ t alignment, size t size);

where size_t jgunsigned int data type defined in the header file <stddef.
h>. When the expression

char* ptr = aligned alloc(,)

is performed, 1024 bytes are allocated with 256 bytes alignment. Memory
alignment decreases the memory access time. That is, performance of the program
increases. However, alignment involves padding and some of the allocated memory
regions are never used; they are used for zero padding. For this reason, efficient
memory use decreases. For this example, although 1024 bytes of memory are
allocated, in fact more than this amount is used for this allocation. The tradeoff
between execution speed and amount of memory used should be considered when C
functions with memory alignments are to be used.

242 10 Pointers

Example 10.50 In this example, we allocate memory location for two integers and
explain the allocated regions (Fig. 10.9).

#include <stdio.h> Code
#include <stdlib.h> 10.49

int main ()
{

int* ip;
ip = (int*)malloc (2 * sizeof (int));

if (ip == NULL)
{

printf()
exit (0);

}

else

{
printf();
printf (, ip)

}

}
Output(s)

Memory allocation is successful.
ip = 00000000001E1400

When memory allocation is performed using malloc() function, a number of
consecutive memory locations are reserved for storage.

This can be considered as reserving a number of tables in a restaurant. However,
this does not mean that nonreserved tables can be used. If they are free, they can be
used. However, there is no guarantee that free tables are available.

Fig. 10.9 Visual ip = 0x00000000001E1400
g‘;;;tl‘:‘; of(;ro 0x00000000001E1401
o 0x00000000001E1402
0x00000000001E1403

0x00000000001E1404

0x00000000001E1405

0x00000000001E1406

0x00000000001E 1407

ip[0]

ip[1]

Y FRCY BRCH ECH BCH RO S RS

10.10 Dynamic Memory Allocation

243

Example 10.51 In this example, memory allocation is performed for two integers.

The malloc function returns a pointer to the head of the allocated block.

#include <stdio.h>
#include <stdlib.h>

int main ()

{

int* ip;

if (ip == NULL)
{
printf(
exit (0);
}
else

{
printf(

printf(

printf(
printf (

printf (
printf(
printf (
printf (

, ip);

ipl
ipl

ipl
ipl
ipl
ipl

ip = (int*)malloc (2 * sizeof(int));

1) ;// reserved, have arbitrary value
1);// reserved, have arbitrary value

1)
1)
1)
1)

Code
10.50

In this example, “ip” holds the address of the head of the allocated block, and, ip
+3, ip+4 are the addresses of the consecutive locations, but they are not reserved;

however, these locations may also be accessible. They hold arbitrary values.

Output(s)

Memory allocation is successful.
ip = 0000000000A21400

ip[0] = A261F0

ip[11=0
ip[2] = A20150
ip[3] =0

ip[4] = 454B5F49
ip[5] = 6F6E3D59

244 10 Pointers

Example 10.52 In this example, we dynamically allocate memory and write values
to allocated addresses. Besides, we also try to write values for nonallocated
addresses.

#include <stdio.h> Code
#include <stdlib.h> 10.51
int main()
{
int* ip;
ip = (int*)malloc(2 * sizeof(int))
if (ip == NULL)
{
printf ()
exit (0) ;
}
else
{
printf ()
printf (, ip)
ip[0] = 0x34; // ok, reseved location
ip[l] = 0x23456789; // ok, reseved location
ip[2] = O0xABCD3456; // may give error, non-reseved location
ip[3] = 0x6783DEFA; // may give error, non-reseved location
printf(, ipl[01) 7
printf(, ipl[ll1)
printf (, ipI2);
printf(, ipl31) 7
}
}
Output(s)

Memory allocation is successful.
ip = 0000000000B01400

ip[0] = 34
ip[1] = 23456789

ip[2] = ABCD3456
ip[3] = 6783DEFA

10.10 Dynamic Memory Allocation 245
10.10.2 calloc() Function

“calloc” means “contiguous allocation.”
It is similar to malloc() but the reserved locations are initialized with 0. The
prototype of calloc function is

dataType* ptr = (dataType*) calloc(number of elements, dataType size);

Example 10.53 When calloc is used for memory allocation, the allocated registers
are initialized with zeros.

#include <stdio.h> Code
#include <stdlib.h> 10.52
int main()
{
int* ip;
ip = (int*)calloc (3, sizeof(int));
if (ip == NULL)
{
printf () ;
exit (0);
}
else
{
printf () ;
printf (, ip) s
printf(, ip[0]1);
printi(, ipliD);
}
}
Output(s)

Memory allocation is successful.
ip = 0000000000B31400

ip[0] =0
ip[1] =0

246 10 Pointers
10.10.3 free() Function

The function free() is used to deallocate the memory. It is used as
free (ptr) ;

where ptr is the pointer pointing to a memory location allocated by malloc or
calloc functions.

Example 10.54 Free function can be used for both malloc and calloc allocated
regions.

finclude <stdio.h> Code
#include <stdlib.h> 10.53

int main()

{
float* fpl, * fp2;

fpl

(float*)malloc (2 * sizeof(float));

fp2

(float*)calloc (3, sizeof(float));

if (fpl == NULL || fp2 == NULL)
{
printf()
exit (0);
}
else
{
printf (),
free(fpl);
printf (),

printf ()i
free(fp2);
printf ()

Output(s)
Malloc allocation is successful.
Malloc allocated memory is freed.

Calloc allocation is successful.
Calloc allocated memory is freed.

10.10 Dynamic Memory Allocation 247
10.10.4 realloc() Function

The size of a previously allocated memory can be changed using the realloc()
function; its prototype is

ptr = realloc(ptr, new size);

where ptr points to a previously allocated memory location. New locations are
initialized with arbitrary values.

Example 10.55 In this example, realloc function is used to increase the amount of
reserved memory from two integer size to four integer size.

#include <stdio.h> Code
#include <stdlib.h> 10.54
int main()
{
int* ip;
ip = (int*)malloc(2*sizeof (int));
if (ip == NULL)
{
printf ()
exit (0) ;
}
else
{
printf(),
ip[0] = 43;
ip[l] = 56;
printf(, ipl[01)
printf(, iplll)
ip = realloc(ip, * sizeof (int));
printf ()
ip[2] = 78;
ip[3] = 95;
for (int i = 0; 1 < 4; i++)
{
printf (1, iplil)
}
free(ip);
}
}

248 10

Output(s)
Memory is allocated.

ip[0] =43 ip[l] =56
Memory is re-allocated.

ip[0] = 43 ip[1] =56 ip[2] =78 ip[3] =95

10.11 Memory Functions
10.11.1 Memset Function

The prototype of the memset() function is

void* memset(void* ptr, int ch, size_t N)

Pointers

The memset() function sets the first N bytes starting from address ptr to the value
ch. Although ch is of type int, it is converted to unsigned character. This function is

defined in the header file <string.h>.

Example 10.56 In this example, the allocated memory is initialized with four “A”

letters.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// void *memset (void* ptr, int ch, size t N);
int main()

{

unsigned char* ptr;

memset (ptr, , 4);

Code
10.55

ptr = (unsigned char*) malloc(4 * sizeof (unsigned char));

printf("sc, %c, %c, %c", ptr[0], ptr[l], ptr[2], ptr[:]);

Output(s) A, A, A, A

10.11 Memory Functions

Example 10.57 Integer

249

numbers can also be used with memset function to

initialize allocated memory locations.

#include <stdio.h> Code
#include <stdlib.h> 10.56
#include <string.h>
int main ()
{
unsigned int* ptr;
ptr = (unsigned int*) malloc(3 * sizeof(unsigned int));
memset (ptr, 0x56, 12);
printf ("$X \n", ptr[0]);
printf ("$X \n", ptr[l]);
printf ("$X \n", ptr[2]);
}
Output(s)
56565656
56565656
56565656

10.11.2 Memcpy Function

The prototype of the memcpy() function is

void* memcpy(void* destination, const void *source, size_t N)

The memcpy() functon copies the first N bytes from a memory block, whose
starting address is source, to the memory block whose starting address is destination.
The function returns a pointer to the destination address. If source and destination
addresses overlap, undefined behavior may be observed when memcpy() function

is used.

250 10 Pointers

Example 10.58 In this example, we illustrate the use of memcpy function.

#include <stdio.h> Code
#include <stdlib.h> 10.57
#include <string.h>

// void *memset (void* ptr, int ch, size t N);
// void* memcpy(void* destination, const void *source, size t N)

int main()

{
unsigned char* ptr_src;
unsigned char* ptr_dest;

ptr_src = (unsigned char*) malloc(4 * sizeof (unsigned char));
ptr_dest = (unsigned char*) malloc(4 * sizeof (unsigned char));
memset (ptr_src, , 4)

memcpy (ptr_dest, ptr_src, 4);

o

printf ("%c, %c, %c, %c", ptr_dest[(], ptr_dest[!], ptr_dest[;],\
ptr_dest[3]);

Output(s) A, A, A, A

10.11.3 Memmove Function

The prototype of the memmove() function is

void* memmove (void* destination, const void *source, size_t N)

The memmove() function moves the first N bytes from a memory block, whose
starting address is source, to the memory block whose starting address is destination.
The function returns a pointer to the destination address. The move operation is
different from the copy operation. After move operation, source addresses do not
contain old data, that is, consider moving your house, old house is taken by others.
Even if source and destination addresses overlap, memmove() function works fine.

10.11 Memory Functions 251

Example 10.59 In this example, we illustrate the use of memmove function.

#include <stdio.h> Code
#include <stdlib.h> 10.58
#include <string.h>

// void *memset (void* ptr, int ch, size t N);
// void* memcpy(void* destination, const void *source, size t N)

int main()

{
unsigned char* ptr_src;
unsigned char* ptr_dest;

ptr_src = (unsigned char*) malloc(4 * sizeof (unsigned char));
ptr_dest = (unsigned char*) malloc(4 * sizeof (unsigned char));
memset (ptr_src, ;4)s

memmove (ptr_dest, ptr_src, 4);

printf ("Destination values are: %c, %c, %c, %c \n", \
ptr_dest[0], ptr_dest[1], ptr_dest[2], ptr_dest[3]);

printf ("After move, source values are: %c, %c, %c, %c \n", \
ptr_dest[0], ptr_dest[l], ptr_dest[’], ptr_dest[3]);

Output(s)
Destination values are: A, A, A, A
After move, source values are: A, A, A, A

10.11.4 Memcmp Function

The prototype of the memcmp() function is

int memcmp (const void* ptrl, const void* ptr2, size_t N);

The memcmp() function compares the content of the memory block pointed by
ptrl containing N bytes to the memory content of the memory block pointed by ptr2
containing N byes, and return value is

— Negative if the content of block-1 is less than the content of block-1
— Zero if the contents are equal to each other
— Positive if the content of block-1 is greater than the content of block-2

252

10 Pointers

Example 10.60 In this example. we illustrate the use of memcmp function.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()

{
unsigned int* ptrl;
unsigned int* ptr2;

ptrl

ptrl[0] = 0x11111111; ptrl[1]
ptr2[0] = 0x11111111; ptr2[1]

int result = memcmp (ptrl, ptr2,

(unsigned int*) malloc(? * sizeof (unsigned int));
ptr2 = (unsigned int*) malloc (2 * sizeof (unsigned int));

0x11111111;
0x21111111;

8);

printf ("Result is : %d", result);

Code
10.59

Output(s) Resultis: —1

Problems
1. An integer variable is defined as

int a = 565

’

Print the address value of this variable.

2. What is the output of Code 10.60?

#include <stdio.h>

int main()
{

=

int a = 56;

Code
10.60

printf("a = 3d", *(&a));

10.11 Memory Functions

3. What is the output of Code 10.61?

void myFunc (float*) ;

int main ()

{

float a = 4.8,
myFunc (&a) ;

printf("$.1£f", a);
}
void myFunc(float* £p)
{

*fp = .9;
}

Code
10.61

4. What are the outputs of Code 10.62?

{

#include <stdio.h>

int main()

float a = 3.4;
float* fp = &a;
*fp += 2.3,

printf("a = $.1f \n",

Code
10.62

a);

printf("*fp = $.1f \n", *£fp);

253

254 10 Pointers

5. Run the code in Code 10.63, and by drawing on a paper show how integer value
is stored in memory.

finclude <stdio.h> Code
10.63
int main()
{
int a = 0xACDEF9D4; // 4-byte integer value
int* ptr = &a;
printf ("Value of a is = %X \n", a);
printf ("Address of a is = %X \n", &a);
printf ("Pointer value is = %p \n", ptr);
}

6. Assume that you have a pointer ptr pointing to an integer variable. If the value of
pointer ptr is 0, then what is the value of ptr+1?

7. What is the size of a pointer variable?

8. What is the output of Code 10.64?

#include<stdio.h> Code
10.64

int main()

(int myArray[] = {1, 2, 3, 4, 5, 6, 7, 8};
int *ptrl = myArray;
int *ptr2 = myArray + 3;

printf ("Number of integers between two adresses are: %d\n",
ptr2 - ptrl);

printf ("Number of bytes between two adresses are: %d",
(char*)ptr2 - (char*) ptrl);

10.11

Memory Functions

9. What is the output of Code 10.65?

10. Find the error in Code 10.66.

#include <stdio.h> Code
10.65
int main()
{
int a;
char* cp;
cp = (char*) &a;
a = OxAAAABBBB;
cp[0] = 0xDD;
cpl[l] = OxEE;
printf ("$X\n",a);
}
#include <stdio.h> Code
10.66
int main()
{
int a = 67;
int b = 89;

const int* ip=é&a;

*ip = 40;
ip = &b;
*ip = 67;

255

256

11. Find the error in Code 10.67.

Code
#include <stdio.h> 10.67

void myFunc (const int* ip)

{
*ip = *ip+2;
}
int main()
{
int a = 10;
myFunc (&a) ;
}

12. Find the error in Code 10.68.

#include <stdio.h> Code
10.68
int main()
{
int a = 45;
int* const ip;
ip=¢&a;
}

13. Find the error in Code 10.69.

10 Pointers

{

#include <stdio.h>

int main()

float myArray[5] = {16.5, 70.6, 56.5,
float* fp = myArray;
fp = fp +2;

printf("$.1£f", *£fp);

Code
10.69

10.11 Memory Functions 257

14. What is the difference between heap and stack memory?
15. What is the output of Code 10.70?

#include<stdio.h> Code
10.70
void myFunc (int** ptr)
{
**ptr = 35;
}

int main()

{

int a = 10, *ptrl, **ptr2;
ptrl = &a;

ptr2 = &ptrl;

myFunc (ptr2) ;

printf("a = %d ",a);

Chapter 11 ®)
Directives and Macros in C Chack or

11.1 Introduction

The program lines that start have a symbol, #, called directives, and directives are
processed with a built-in program called preprocessor, where the prefix -pre- implies
that preprocessors process codes before compilation. A directive has syntax

#...

When the symbol # is met inside the code, the preprocessor replaces the
corresponding directive with a code, and we get a code without the # symbol, then
the compiler compiles the code. The operation of directives is illustrated in Fig. 11.1.

We use preprocessor directives for

Writing macros
File inclusion
Conditional compilation

11.2 Preprocessor Directives as Macros

A macro is defined using the syntax
#define macroName macroValue

and after preprocessing, the macroName will be replaced by macrovValue in
the program whenever it is met.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 259
O. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45361-8_11&domain=pdf
https://doi.org/10.1007/978-3-031-45361-8_11#DOI

260 11 Directives and Macros in C

Any processor
directives

) Object : Executable
Compiler ey g Linker ey

Process the preprocessor directives

Fig. 11.1 Macros are preprocessed

Example 11.1 We define two macros called myInteger and myFloat.

#include <stdio.h> Code
11.1

#define myInteger 12
#define myFloat 45.8

int main()

{
printf ("myInteger = %d \n", myInteger);
double r = myInteger + myFloat;
printf("r = 2.11f \n", r);
}
Output(s)
mylnteger = 12
r=>57.8

Example 11.2 The mathematical number z can be defined as macro and can be used
to calculate the area of a circle.

11.3 Macros as Functions

#include<stdio.h>
#define PI 3.14
int main()
{
int r;
printf(
&r);

scanf (,

printf (

float a = PI * (r*r);

Code
11.2

// area of a circile

,a);

Output(s)
Please enter radius of the circle :4
Circle are is 50.24

11.3 Macros as Functions

261

Although a macro can perform a similar task to a function, they are completely
different things. Macros are preprocessed before the entire program is compiled. On
the other hand, functions are compiled, they are NOT preprocessed.

Example 11.3 In Code 11.3, we define a macro that acts as a function.

#include <stdio.h>
#define macFnc(a, b)
int main()

{

int a = 6, b = ¢

printf(

Code
11.3

(a > b) ? atb a-b

’

, macFnc(a, b)),

Output(s) result = —2

Example 11.4 In this example, we calculate the discriminant of a second-order

mathematical equation using macro.

262 11 Directives and Macros in C

#include <stdio.h> Code
11.4

#define macFnc(a, b, c) ((b) *(b)=-4*(a)*(c)) /(2% (a))
int main ()
{

inta=1, b=-5, ¢c=4;

printf ("result = %d \n", macFnc(a, b, c));

Output(s) result =4

Example 11.5 In this example, the area of a circle is calculated using a macro.

#include <stdio.h> Code
11.5

#define PI 3.1415
#define circleArea(r) (PI*r*r)

int main()

{

float r, a;

printf()i
scanf (, &)

a = circleArea(r);

printf(ra)i

Output(s)
Please enter radius of the circle :4
Circle are is 50.26

11.4 Multiline Macros

We can write multiline macros by placing “\” at the end of each line.

11.4 Multiline Macros 263

Example 11.6 In multiline macros, at the end of each line there is “\”.

#include <stdio.h> Code
11.6
fdefine DISP(start, N)\
for (int indx = start; indx < N; indx++) \
{\

printf ("Hello World!\n");\
}
int main ()

{
DISP (0, 23);

}

Output(s)

Hello World!
Hello World!
Hello World!

Example 11.7 In the previous example, macro is called by some inputs. In this
example, macro is called by just its name.

#include <stdio.h> Code
11.7

#define disp {\
printf ("Hello World!\n");\
printf ("Hello World!");\
printf ("\n");\

}
int main()
{
disp;

}

Output(s)
Hello World!
Hello World!

264 11 Directives and Macros in C

Example 11.8 Macro is expanded into code before compilation.

#include <stdio.h> Code
11.8

#define disp {\
printf ("Hello World!\n");\
printf ("Hello World!");\
printf ("\n") ;\
}
int main()
{
if (1)
disp;
else
printf ()/

When this program is run, we get erroelse’ without a previous ‘if’
Note that preprocessor expands the macros into the code, and then Code 11.8
happens to be as in Code 11.9, which is an erroneous code.

#include <stdio.h> Code
11.9

int main()
{
if (1)
printf ()
printf (),
printf ()
else
printf ()

To overcome this bottleneck, we can use curly parenthesis in if-else statement as
in Code 11.10.

11.5 Directives Used for File Inclusion 265

#include <stdio.h> Code
11.10

#define disp {\
printf ("Hello World!\n");\
printf ("Hello World!"™);\
printf ("\n") ;\

}
int main()

{

if (1)
{ // <---

disp;
} // <---

else
printf ()

When the macro is expanded, we get the error-free Code 11.11.

#include <stdio.h> Code
11.11
int main ()
{
if (1)
{
printf () ;
printf() ;
printf ()
}
else
printf () ;
}

Expansion of the macro is illustrated in Fig. 11.2.
Identifiers are simple macros that do not contain programming statements.

11.5 Directives Used for File Inclusion

The preprocessor directive #include is used to include the header files. To include
the header files in compiler’s library, we use the directive

#include <fileName.h>

and to include the user-developed header files we use the directive

266 11

#include <stdio.h>

Directives and Macros in C

#include <stdio.h>
#define disp {\
printf ("Hello World\n");\ int main ()
printf ("Hello World");\ {
printf ("\n");\ if (1)
} {
int main() printf(
{ i) | 1 — printf(
printf ()
{ }
disp; else
} printf (
else }
printf ()i

Fig. 11.2 Macro is expanded into the code before compilation

#include "fileName.h"

where we assume that the header file stays in the same folder as the source file;
otherwise, we should write the path of the header file, that is, we use the directive as

#include "C:/.../ .../fileName.h"

Example 11.9 We have a header file with name myFile.h.

// "myFile.h"
// content of myFile.h

#define PI 3.1415
#define circleArea(r) (PI*r*r)

and we include this header file in our course code.

#include <stdio.h>
#include "myFile.h"

int main()

{
float r, a;
printf(
scanf (, &r);

a = circleArea(r);

printf(,oa)i

Code
11.12

11.6 Predefined Macros 267

Output(s)
Please enter radius of the circle :4
Circle are is 50.26

11.6 Predefined Macros

Compilers have some predefined macros available in their libraries. These macros
can be used directly in a C program. Let us see some of these macros.

_LINE__

This is a predefined macro that expands to the current line number in the C
program as an integer. __LINE__ is used for log statements, for clarifying the error
location of in a code, and for debugging code.

Example 11.10 In this example, the use of the predefined macro _ LINE__ is
illustrated.

#include <stdio.h> Code
11.13

int main()
{

printf (, LINE);
}

Output(s) Line number is: 5

#include <stdio.h> Code
11.14
int main()
{
//
//
printf (, LINE);

Output(s) Line number is: 7
__FILE__
It expands to the file name of the current program running.

Example 11.11 In this example, the use of the predefined macro _ FILE__ is
illustrated.

268 11 Directives and Macros in C

#include <stdio.h> Code
11.15
int main()
{
printf(, FILE);
}

Output(s) File name is main.c

__STDC_VERSION__

This macro expands to the C Standard’s version number, which is in the form
yyyymm where yyyy stands for year and mm stands for month.

Example 11.12 In this example, the use of the predefined macro
_ STDC_VERSION__ is illustrated.

#include <stdio.h> Code
11.16

int main()
{
printf (, __ STDC VERSION);

}

Output(s) Version Number is 199901
Here 1999 is the year and 01 is the month.

_ DATE__

It is expanded to the compilation date of the program, and the date is in the format
“month dd yyyy.”

Example 11.13 In this example, the use of the predefined macro _ DATE__ is
illustrated.

#include <stdio.h> Code
11.17

int main ()
{

printf ("Compilation date is %$s\n", _ DATE);
}

Output(s) Compilation date is Jul 17 2023
__TIME__

It is expanded to the compilation time of the program, and the time is in the
format hour:minute:second.

11.6 Predefined Macros 269

Example 11.14 In this example, the use of the predefined macro _ TIME__ is
illustrated.

finclude <stdio.h> Code
11.18

int main()
{

printf("Compilation time is %s\n", __ TIME);
}

Output(s) Compilation time is 22:16:09
Identifiers are simple macros which do not contain programming statements.

__func__

If this predefined identifier is inside a function, it is replaced by the name of the
function; otherwise, if it is inside the main function, it is replaced by the word
“main.”

Example 11.15 In this example, the use of the predefined macro _ func__ is
illustrated.

#include <stdio.h> Code
11.19

void myFunc ()

{
printf (, _func_)
}

int main()

{
printf (, _func_)
myFunc () ;

Output(s) main myFunc
__cplusplus__

This directive can be used to identify whether the current compiler is a cpp
compiler or not.

Example 11.16 In this example, the use of the predefined macro __cplusplus__ is
illustrated.

270 11 Directives and Macros in C

#include <stdio.h> Code
11.20

int main()
{
#ifdef cplusplus
printf (),
#else
printf ()

#endif

Output(s) CPP is NOT supported

11.7 Conditional Compilation

Conditional compilation directives are used to compile a specific part of the program
and skip the rest. Conditional compilation is achieved using the directives

#1f conditionalExpression
#ifdef identifier
#ifndef identifier

#elif conditionalExpression

#elifdef identifier (defined in C23)
#elifndef identifier (defined in C23)
#else
#endif

The syntax of #ifdef...#endif pair for conditional compilation is given in
Code 11.21.

#ifdef identifier Code
// statements 11.21
// to be compiled

fendif

If identifier is defined, then the code inside is compiled.

11.7 Conditional Compilation

In a similar manner, we can use #ifndef
compilation; its syntax is shown in Code 11.22.

271

.. .#endif pair for conditional

#ifndef identifier

// statements

// to be compiled
#endif

Code
11.22

In this case, if identifier is NOT defined, then the code inside is compiled.

Example 11.17 In this example, we define the macro P1 directly.

#include <stdio.h>
#define P1l

int main(void)

{
#ifdef P1
printf ("P1 is defined \n");
printf ("P1 has no value");
felse
printf ("P1 is NOT defined \n");
#endif
}

Code
11.23

Output(s)
P1 is defined
P1 has no value

Example 11.18 In this example, we define the macro P1 inside a conditional

expression.

#include <stdio.h>
#ifndef P1

#define P1
#endif
int main ()

{
#ifdef P1

#else

fendif

printf ("P1 is defined \n");
printf ("P1 has no value");

printf("P1 is NOT defined \n");

Code
11.24

272 11 Directives and Macros in C

Output(s)
P1 is defined
P1 has no value

Example 11.19 Code 11.23 can also be written as Code 11.25.

#include <stdio.h> Code
11.25

#define P1

int main(void)

{
#if defined P1
printf ("P1l is defined \n");
printf ("P1 has no value");
#else
printf("P1 is NOT defined \n"");
#endif
}

Output(s)
P1 is defined
P1 has no value

Example 11.20 We define the macro P1 with a value.

#include <stdio.h> Code
11.26

#define P1 45.8

int main(void)

{
#ifdef P1
printf ("P1 is defined \n");
printf ("P1 = %.1f", P1);
#else
printf ("P1 is NOT defined \n");
fendif
}

Output(s)
P1 is defined
P1 =458

11.7 Conditional Compilation 273

Example 11.21 A macro previously defined can be undefined.

#include <stdio.h> Code
11.27

#define P1 45.8
#undef P1

int main(void)

{
#ifdef P1
printf ("P1 is defined \n");
printf("P1 = %.1f", P1l);
#else
printf ("P1 is NOT defined \n");
fendif
}

Output(s) P1 is NOT defined

Example 11.22 In this example, the use of macros in a conditional ladder structure
is illustrated.

#include <stdio.h> Code
11.28

#define P1

#define P2

int main(void)
{
#ifdef P1
#define VAL A 16
printf ("P1l is defined. \n");
printf ("VAL A is now defined.");
#elif defined P2
#define VAL B 34
printf ("P2 is defined \n");
printf ("VAL B is now defined.");
#else
#define VAL C 34
printf ("P1, P2 are NOT defined. \n");
printf ("VAL C is defined.");
#fendif

Output(s)
P1 is defined.
VAL_A is now defined.

274 11 Directives and Macros in C

Example 11.23 We use #undef macro in this example.

#include <stdio.h> Code
11.29

#define P1

#define P2

#undef P1

int main(void)
{
#ifdef P1
#define VAL A 16
printf ("P1 is defined. \n");
printf ("VAL A is now defined.");
#elif defined P2
#define VAL B 34
printf ("P2 is defined \n");
printf ("VAL B is now defined.");
#else
#define VAL C 34
printf ("P1l, P2 are NOT defined. \n");
printf ("VAL C is defined.");
#endif

Output(s)
P2 is defined
VAL_B is now defined.

11.8 Concatenation Operator ##

The operator ## is used to concatenate macro arguments. It is also called either token
pasting operator or merging operator.

Syntax

#define macroName (pl, p2) pl##p2

Example 11.24 In this example, we concatenated two integers 12 and 96 using a
macro.

11.8 Concatenation Operator ## 275

#include <stdio.h> Code
11.30

#define myConcat (a, b) a#i#b

int main ()

{
int a = myConcat(l12, 96);
printf("a = %d", a);
}
Output(s)
a= 1296
Problems

1. In C programming, if a macro, which is not previously defined, appears inside an
expression, its value is accepted as zero. However, it is still undefined. Consid-
ering this fact, find the output of Code 11.31.

#include <stdio.h> Code
11.31
#if M1 ==
#define M2 6
#else
#define M2 8
#endif

int main()
{
printf("M1 = 24", M2);
//printf ("M1 %d", M1); // gives error, it is still undefined

2. While Code 11.32 is ok, Code 11.33 gives an error. Explain the reasoning
behind this error.

#include <stdio.h> Code #include <stdio.h> Code
11.32 11.33
#define X 5

#define X \

printf ("Hello World"); #if X\
printf ("Hello World");
int main() #endif
{
X; int main()

} {
X;

}

276 11 Directives and Macros in C

3. What is the output of Code 11.34?

#include <stdio.h> Code
11.34

#define cube(a) (a)*(a)*(a)
int main()
{

float b = 64.0/ (cube(8)) ;

printf("%.1£f", b);

4. There is a big difference between

#define cube(a) (a)*(a)*(a)
and
#define cube(a) a*a*a

Give an example that shows this difference.

5. What is the output of Code 11.35?

include <stdio.h> Code
11.35

define myPrintf "%s Hello World"

int main()
{

printf (myPrintf , myPrintf) ;
}

6. Convert the function in Code 11.36 to a macro.

void disp() Code

{ 11.36
printf ("Hello World!\n");
}

Chapter 12 ®)
Type Qualifiers, Enumerations, and Storage <o
Classes in C

12.1 Type Qualifiers in C

The type qualifiers used in C programming are

const restrict volatile

12.1.1 Const

A type qualifier is used to add additional attributes to a variable. For instance, in the
definition

double num;

num is the variable name, the data type used by the variable is a double data. If we
use const qualifier for the variable num, we get

const double num;

and in this case the data type used by the variable is still a double data but its value
cannot be changed, that is, the variable has an additional property.

The type qualifier const can be used with pointers. In this case, the one to the right
of const has constant value and cannot be changed.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 277
O. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45361-8_12&domain=pdf
https://doi.org/10.1007/978-3-031-45361-8_12#DOI

278 12 Type Qualifiers, Enumerations, and Storage Classes in C

Example 12.1

float num = 3.4;

const float* fp = #

in the pointer expression, to the right of const, there is data type float; this shows
that data value is constant.

Example 12.2

float num = 3.4;

float* const fp = #

in the pointer expression, to the right of const, there is pointer variable fp; this
shows that pointer value is constant. It means the pointer cannot point to another
variable, that is, the pointer address cannot be changed.

Example 12.3 Constant data pointed by a pointer cannot be changed.

#include <stdio.h> Code
12.1
int main()
{
int a = 13;
const int* ptr = &a;
*ptr = 54; // error, value cannot be changed

Output(s) error: assignment of read-only location ‘*ptr’

Example 12.4 The address of a constant pointer cannot be changed.

#include <stdio.h> Code
12.2

int main(void)

{

int a = 23, b = 49;
int *const ptr = &a;
ptr = &b; //error, pointer address cannot be changed

Output(s) error: assignment of read-only variable ‘ptr’

12.1 Type Qualifiers in C 279
12.1.2 Restrict

The const and volatile qualifiers are introduced in C89; later, the restrict qualifier is
defined in the C99 standard. This keyword is useful for engineers working on
embedded systems. This qualifier is used to optimize the performance of the
compiler for memory access. The value pointed by restrict pointer is held in a
register, that is, cached, and during intermediate operations cached value is used.

A pointer having restrict qualifier indicates that a particular region of memory
should be accessed by one pointer and never another. If a pointer is defined to be
restrict and it points to a variable, and then the variable is accessed by another
pointer, then undefined behavior may happen.

Example 12.5

void myFnc(int* ptra, int* ptrb, int* ptrc) Code
{ 12.3

*ptra += *ptrc;
// *ptrc is read from memory, and *ptra += *ptrc is performed

*ptrb += *ptrc;
// *ptrc is read from memory, and *ptrb += *ptrc is performed

In Code 12.3, four instructions are performed. Let us use the restrict keyword for
the pointers as in Code 12.4.

void myFnc(int* ptra, int* ptrb, int* restrict ptrc) Code
{ 12.4
*ptra += *ptrc;
// *ptrc is read from memory, and *ptra += *ptrc is performed

*ptrb += *ptrc;
// *ptrb += *ptrc is performed

Due to the use of restrict keyword in Code 12.4, three instructions are performed.
One less instruction is needed compared to Code 12.3.

12.1.3 Volatile

This qualifier is useful especially for embedded software engineers or hardware
programming engineers. The volatile keyword is used to take attention of the
compiler to the variables whose values can change instantly, and the compiler avoids
optimization techniques that can cause the miss detection of instant changes of
variables.

280 12 Type Qualifiers, Enumerations, and Storage Classes in C

For instance, a global variable representing a data port can receive a value
whenever an interrupt occurs, and in this case the global variable that is used for
the data port should be declared as volatile in order to catch the latest data available
at the port. Electronic devices utilizing touch sensors should process every input
immediately.

If the variable is not qualified as volatile, the compiler applies optimization
methods to speed up the program execution, and when the port is read, it is placed
into a catch, that is, register, and the cached value is used for some time as port value,
the port is not read every time, and when the catch time expires the port value is
updated with the new input if there is. Besides, in multithread applications shared
global variables should be qualified as volatile due to a similar reasoning as in the
case of hardware interrupts.

In summary, if a variable is qualified as volatile, then compiler does not do
optimization for that variable. For example,

volatile int a;

12.2 Storage Classes in C

The keywords used to classify storage method in C are

auto extern static register

12.2.1 Auto

Auto is used for default storage, and most time, it is not explicitly used.
Example 12.6
auto int a;
is the same as

int a;

12.2.2 Extern

To understand the role of keyword extern, let us explain the meanings of declaration
and definition.

Declaration
Declaration of a variable or function is nothing but making compiler aware of the
existence of a variable or a function. That means giving pre-information to the

12.2 Storage Classes in C 281

compiler about a variable or a function. Function declaration involves function
name, input arguments, and returned data type. Memory is not allocated for variable
or function. It is similar to calling a restaurant and making them aware of you that
you are a customer candidate, but a reservation is not made for you. To declare a
variable, we use the keyword extern.

Definition

When a variable or function is defined, memory is automatically allocated for
variable or function. It is similar to calling a restaurant and reserving a table for
your dinner.

Example 12.7 A declaration is made in

extern float a;

Example 12.8 A function declaration is made in
float myFunc(float, double);
or in
float myFunc(float a, double d);
Example 12.9 A definition is made in

float a;

Example 12.10 A function definition is made in

float myFunc(float a, float b)
{

return a*b;

}

Example 12.11 A declaration and a definition are made in

extern float a = 20.45;

Here, we inform the compiler that the variable a can be used in another file.

Example 12.12 Declaration is made for variable “a” in Code 12.5, and “a” is
defined in Code 12.6.

282

12 Type Qualifiers, Enumerations, and Storage Classes in C

Code
12.5

// file name is : main.c

#include <stdio.h>
extern float a;

int main()
{

printf(,a);

}

// file name is variables.c

float a = 23.56;

Code
12.6

When these two files are compiled in a project, we get the output a = 23.56.

Example 12.13 If we write a header file, variables.h, and include it in our code, then
it is not necessary to declare the variable using the keyword extern.

Code
12.7

// file name is : main.c

#include <stdio.h>
#include "variables.h"

// no need for extern declaration
// extern float a;

int main()
{
printf(,a);

}

// file name is variables.h

float a = 23.56;

Code
12.8

Example 12.14 In this example, we have three separate

contains two extern declarations.

// main.c
#include <stdio.h>
extern float a;
int main ()
{

printf(

myFunc () ;

extern void myFunc() ;

Code
12.9

,a);

The file variables.c contains definition for the variable a.

files. The file main.c

12.2 Storage Classes in C 283

// variables.c Code
12.10

float a = 23.56;

’

The file functions.c contains the declaration n for the variable a.

// functions.c Code
12.11

#include <stdio.h>
extern float a;

void myFunc()
{

printf(, a);s
}

When these three files are compiled in a project, we get the output

Inside main, a = 23.56
Inside function, a = 23.56

Let us remove the extern declaration from functions.c as in Code 12.12.

// functions.c Code
12.12

#include <stdio.h>

void myFunc ()
{

printf (,a);

}

When we now compile three files, we get the output
functions.c: In function ‘myFunc’:

functions.c:9:48: error: ‘a’ undeclared (first use in this function)

That is, we get an error.

12.2.3 Static

Static variables preserve their last values until the main program terminates. A static
value needs to be initialized at its declaration. A static variable is defined as

static dataType variable name = value;

284 12 Type Qualifiers, Enumerations, and Storage Classes in C

Example 12.15 The last value of a static variable is kept, and this property is very
useful in function calls.

#include <stdio.h> Code
12.13

void myFunc ()
{
static int a = ;

a++;

printf (, a);

int main()

myFunc () ;
myFunc () ;
myFunc () ;

Output(s)

Inside function, a = 11
Inside function, a = 12
Inside function, a = 13

12.2.4 Register

The most frequently used variables can be attributed with register keyword. When a
variable is defined as register variable, it is stored in special registers and these
registers are accessed in a fast manner compared to stack memory. We can define a
register variable as

register float a = ;

Fast access registers do not have explicit addresses as stack memory registers, and
for this reason we cannot use address operator, &, for the register variables.

12.2 Storage Classes in C

Example 12.16 Address operator & cannot be used with register variables.

#include <stdio.h>
int main()
{

register int a

int* ptr = &a;

printf ("%p", ptr);

Code
12.14

= 45;

// error

Output(s) error: address of register variable ‘a’ requested
Pointers can be used with register keyword. Do not forget that pointers are
variables and any variable can be used with register keyword.

Example 12.17 Pointers can be used with register variables.

#include <stdio.h>

int main()

{
int a = 10;

register int* ptr =

printf ("address is

Code
12.15

&a;

0x%p", ptr);

Output(s) address is: 0x0x7ffc7620f544

Register keyword cannot be used for static and global variables.

Example 12.18 Static register variables cannot be defined.

#include <stdio.h> Code
12.16
int main()
{
register static int a = 10; // error
printf(" a = %d", a);
}

Output(s) error: multiple storage classes in declaration specifiers.

285

286 12 Type Qualifiers, Enumerations, and Storage Classes in C

Example 12.19 Global register variables cannot be defined.

Code
#include <stdio.h> 12.17
register static int a = 10; // error

int main()
{

printf(" a = %d", a);
}

Output(s) error: multiple storage classes in declaration specifiers.

Problems
1. Is there any difference between the definitions

int volatile a;

and

volatile int a;

?

2. Explain the differences in the pointer definitions in the expressions

float volatile* f£fp;

volatile float* £fp

float* volatile fp;

float (*volatile f£fp);
volatile float* volatile fp;
float volatile* volatile fp;

12.2 Storage Classes in C 287

3. Why do we use restrict qualifier in C programming? Should every code use it?
Which engineering field needs this qualifier the most?
4. What are the outputs of Code 12.18?

#include <stdio.h> Code
12.18
void myFunc ()
{
static float a = 2.2;
a=a+ 3.2;
printf (, a)i
}
int main ()
{
myFunc () ;
myFunc () ;
myFunc () ;
}

5. Are extern and register keywords used for type qualifying or are they storage
classes?

Chapter 13)
Integer with Exactly N Bits Sshex

13.1 General Form of Fixed Width Integers
intN t
The data type
intN t

is used for signed integer with exactly N bits, and every compiler according to
C99 standard must support the values for 8, 16, 32, and 64. However, a compiler is
free to support other values for N such as 24, 48, etc.

Thus, a standard compiler has the data types

int8 t intl6 t int32 t int64 t

printf macros used for intN_t are

PRIAN PRI1iN PRION PRIXN PRIXN

13.2 Macros for printf and scanf

The macros for printf begin with

PRI

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 289
O. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45361-8_13&domain=pdf
https://doi.org/10.1007/978-3-031-45361-8_13#DOI

290 13 Integer with Exactly N Bits

and the macros for scanf begin with
SCN.
To print the signed integers with printf() function, we use the macros
PRIAN PRIiN PRION PRIXN PRIXN
where N can be 8, 16, 32, and 64. For the scanf() function, we use the macros
SCNAN SCNiN SCNoN SCNxN SCNXN
where N can be 8, 16, 32, and 64.

To be able to use these macros, we need to include the header file <inttypes.h> in
our program.

Example 13.1 The printf() function is used in a different manner for fixed length
integer types.

#include <inttypes.h> Code
#include <stdio.h> 13.1

int main(void)
{
int8 t num = 23;
printf("num = $ " PRId8 "\n", num);

printf("num = % " PRIi8 "\n", num);

Output(s)
num = 23
num = 23

13.2 Macros for printf and scanf 291

Example 13.2 Different sizes are available for different fixed length integer types.

#include <stdio.h> Code
#include <stdint.h> 13.2
int main()
{
int8 t a = OxFrF; // 8-bit signed integer
intlé_t b = OxFFEE; // 16-bit signed integer
int32_t ¢ = OxFFFFFFEFE; // 32-bit signed integer
int64_t d = OxFFFFFFFEFEFFFFFE; // 64-bit signed integer
printf("sizeof int8 t is %lu \n", sizeof(int8_t))
printf("sizeof intl6_t is %lu \n", sizeof(intl6_t))
printf("sizeof int32 t is %lu \n", sizeof(int32_t));
printf("sizeof int64 t is %lu \n", sizeof(int64_t))
}
Output(s)

sizeof int8 tis 1

sizeof int16_t is 2
sizeof int32_tis 4
sizeof int64_t is 8

Example 13.3 For negative integers, 2’s complement representation is used. —1 is
represented by all 1°s.

#include <stdio.h> Code
#include <stdint.h> 13.3
int main()
{
int8_t a = OxFrF; // 8-bit signed integer
intlé_t b = OxFFFE; // 16-bit signed integer
int32_t ¢ = OxFEFFFEEE; // 32-bit signed integer
int64_t d = OxFFFFFFFFFFFFEEEE; // 64-bit signed integer
printf("a = % " PRIA8 "\n", a);
printf("b = % " PRId16 "\n", b);
printf("c = % " PRId32 "\n", c);
printf("d = % " PRId64 "\n", d);
}
Output(s)
a=—1
b=-1
c=-—1

d=—1

292

13

The minimum values of the signed integers

int8_t intl6_t int32_t int64_t

are defined by the macro constants

INT8 MIN INT16 MIN INT32 MIN INT64 MIN

and similarly their maximum values are defined by the macro constants

INT8 MAX INT16 MAX INT32 MAX INT64 MAX

Example 13.4

#include <stdio.h>
#include <inttypes.h>

int main()

{

o

°

n

printf ("INT8 MIN

printf ("INT16 MIN
printf ("INT32 MIN
printf ("INT64 MIN

Code
13.4

Integer with Exactly N Bits

PRIA8 "\n", INT8_MIN) ;

" PRIA16 "\n", INT16_MIN);
" PRIA32 "\n", INT32_ MIN);
" PRId64 "\n", INT64 MIN);

Output(s)

INT8_MIN = —128

INT16_MIN = —32768

INT32_MIN = —2147483648
INT64_MIN = —9223372036854775808

Example 13.5

#include <stdio.h>
#include <inttypes.h>

int main()

{

— aomn

printf ("INT16 MAX
printf ("INT32 MAX
printf ("INT64 MAX

omn

omn
o

Code
13.5

printf ("INT8 MAX = %" PRIA8 "\n", INT8_ MAX);

PRId16 "\n'", INT16_ MAX) ;
PRId32 "\n", INT32 MAX);
PRId64 "\n'", INT64_MAX) ;

13.3 uintN_t 293

Output(s)

INT8_MAX = 127

INT16_MAX = 32767

INT32_MAX = 2147483647
INT64_MAX = 9223372036854775807

13.3 uintN_t

The data type
uintN t

is used for unsigned signed integers with exactly N bits, and every compiler
according to C99 standard must support the values for 8, 16, 32, and 64. However, a
compiler is free to support other values for N such as 24, 48, etc.

Thus, a standard compiler has the data types

uint8 tuintlé t uint32 tuint64 t
Macros for printf are
PRIuUN PRION PRIXN PRIXN
and macros for scanf are

SCNuN SCNoN SCNxN SCNXN

where N values can be 8, 16, 32, and 64.
Example 13.6

#include <inttypes.h> Code
#include <stdio.h> 13.6

int main()

{
uint8 t a = OxFr; // 8-bit unsigned integer
uintlé_t b = OxFFFF; // 16-bit unsigned integer
uint32_t ¢ = OxFFFFEEEE; // 32-bit unsigned integer
uint64_t d = OxFEFFFFFFFEFFEEEE; // 64-bit unsigned

printf("a = $"PRIu8"\n", a);
printf("b = $"PRIulé"\n", b);
printf("c = $"PRIu32"\n", c);
printf("d = %"PRIu64"\n", d);

294 13 Integer with Exactly N Bits

Output(s)
a =255
b = 65535

¢ = 4294967295
d = 18446744073709551615

Example 13.7

#include <inttypes.h> Code
#include <stdio.h> 13.7

int main()

{

uint8 t a = OxFF; // 8-bit unsigned integer
uintlé_t b = OxFFFF; // 16-bit unsigned integer
uint32_t ¢ = OxFFFFFFEE; // 32-bit unsigned integer
uint64_t d = OxFFEFFEFFFFEEFEEE; // 64-bit unsigned

printf("a = $"PRIx8"\n", a);
printf("b = $"PRIx16"\n", b);
printf("c = %"PRIX32"\n", c);
printf("d = %"PRIX64"\n", d);

Output(s)
a=ff

b = ffff

¢ = FFFFFFFF

d = FFFFFFFFFFFFFFFF

The minimum values of the signed integers
uint8 tuintlé t uint32 tuint64 t
are 0 and their maximum values are defined by the macro constants

UINT8 MAX UINT16_ MAX UINT32 MAX UINT64_ MAX

13.4 int_leastN_t

Example 13.8

#include <inttypes.h>
#include <stdio.h>

Code
13.8

int main()
{
printf ("UINT8 MAX = %"PRIx8"\n", UINT8_ MAX) ;

printf ("UINT32 MAX
printf ("UINT64 MAX

printf ("UINT16 MAX = %"PRIX16"\n",6UINT16 MAX);
$"PRIx32"\n", UINT32_MAX);
$"PRIX64"\n", UINT64 MAX) ;

Output(s)

UINT8_MAX = ff

UINT16_MAX = FFFF
UINT32_MAX = ffffffff
UINT64_MAX = FFFFFFFFFFFFFFFF

13.4 int_leastN_t

The data type

int_leastN t

295

is used for signed integers with at least N bits. A standard compiler has the data

types

int least8 t int leastl6é_t int least32 t int leasté6

Macros for printf for int leastN t are

4t

PRIALEASTN PRIiLEASTN PRIXLEASTN PRIXLEASTN PRIOLEASTN

where N can be 8, 16, 32, and 64.
Macros for scanf for int leastN t are

SCNALEASTN SCNiLEASTN SCNXLEASTN SCNXLEASTN SCNoLEASTN

where N can be 8, 16, 32, and 64.
Minimum values for int leastN t are

INT LEASTS8 MIN INT LEAST16 MIN INT LEAST32 MIN INT LEAST64 MIN

296 13 Integer with Exactly N Bits

Maximum values for int leastN t are

INT LEAST8 MAX INT LEAST16 MAX INT LEAST32 MAX INT LEAST64 MAX

13.5 uint_leastN t

The data type
uint leastN t

is used for unsigned integers with at least N bits. A standard compiler has the data
types

uint least8 tuint leastl6 t uint least32 tuint least64 t
Macros for printf and scanf for uint leastN t are
PRIULEASTN PRIXLEASTN PRIXLEASTN PRIOLEASTN

where N can be 8, 16, 32, and 64.
Macros for scanf for uint leastN t are

SCNuLEASTN SCNxLEASTN SCNXLEASTN SCNoLEASTN
where N can be 8, 16, 32, and 64.
Minimum values for uint leastN t are 0.

Maximum values for int leastN t are

UINT LEAST8 MAX UINT LEAST16 MAX UINT LEAST32 MAX UINT LEAST64 MAX

13.6 int fastN t

The data type
int_ fastN t

is used for signed integer with at least N bits and fastest processing. A standard
compiler has the data types

int fast8 t int fastlé_t int fast32 t int fast64_t

13.7 uint_fastN_t 297

Macros for printf for int fastN t are
PRIAFASTN PRI1iFASTN PRIXFASTN PRIXFASTN PRIOFASTN

where N can be 8, 16, 32, and 64.
Macros for scanf for int fastN t are

SCNdFASTN SCNiFASTN SCNxFASTN SCNXFASTN SCNoFASTN

where N can be 8, 16, 32, and 64.
Minimum values for int fastN t are

INT_FAST8_MIN INT FAST16_ MIN INT FAST32_MIN INT FAST64_ MIN
Maximum values for int fastN t are

INT FAST8 MAX INT FAST16 MAX INT FAST32 MAX INT FAST64 MAX

13.7 uint_fastN_t

The data type
uint fastN t

is used for unsigned integer with at least N bits and fastest processing. A standard
compiler has the data types

uint fast8 tuint fastlé tuint fast32 tuint fasté64 t
Macros for printf for uint fastN t are
PRIUFASTN PRIXFASTN PRIXFASTN PRIOFASTN

where N can be 8, 16, 32, and 64.
Macros for scanf for uint fastN t are

SCNuFASTN SCNXFASTN SCNXFASTN SCNoFASTN

where N can be 8, 16, 32, and 64.
Maximum values for uint fastN t are

UINT FAST8 MAX UINT FAST16 MAX UINT FAST32 MAX UINT FAST64 MAX

298 13 Integer with Exactly N Bits
13.8 Macros for printf

All the macros for printf() function are shown in Table 13.1.
In this table, we can have N = 8, 16, 32, and 64.

13.9 Macros for scanf

All the macros for scanf() function are shown in Table 13.2.

In this table, we can have N = 8, 16, 32, and 64.

C23 introduces macros for the bit width of the data types, and some of these
macros are

INT8 WIDTH INT FAST8 WIDTH INT LEAST8 WIDTH
INT16 WIDTH INT FAST16 WIDTH INT LEAST16 WIDTH
INT32 WIDTH INT FAST32 WIDTH INT LEAST32 WIDTH
INT64 WIDTH INT FAST64 WIDTH INT LEAST64 WIDTH

Problems

1. How do the macros begin with for printf and scanf() function for fixed width
integers?

2. Which header file needs to be included in the source file to be able to use the

macros to print fixed width integers?

. Can a compiler define 19-bit fixed width integer data type?

4. Fill the inside part of printf() function in Code 13.9 to print the fixed width integer
value.

W

#include <inttypes.h> Code
#include <stdio.h> 13.9

int main(void)
{

int8_t num = ;

printf(....);

299

13.9 Macros for scanf

onTea I19693UT TRWIDSPEXSY

JLdXIdd XVINXTIHd NLSVAXIdd NILSVHTXTHd NXTdd sseoxaddn psubTsun ue 3o 3ndano X
onTeA I9693UT TRWIDSPEXaY

dILdXTdd XVNXTdd NLSVAXIY¥d NISVHTXTHd NXTdd osenaomoT paubtsun ue 30 3ndano X
anTea xabajut

JLdoIdd XVYINOIY¥d NILSVAOTIYd NISVHTOTHd NOT¥d Te30o0 psubtsun ue 30 3ndango o
sniea 1sbsjut

Jdrdnidd XVINNI™¥d NLSVANTIYEd NISVATNI¥d NOT¥d TewTosp paubTsun ue Jo Indano n

MIATINd | XYWIINd NISYATINd NISYETITINd | NTI¥d enTea 106 T

MIAPINd | XYWPI¥Nd NILSYAPI¥d NLSYATPINd | NPI¥d| -23uT Tewrosp psubls e Jo andano P

3 zadauTp| 3 XewjuT | 3 NISeJ JUT| 3 NISeST JUuT| 3 NIUT
[n] [n] [n] [n] [n] juT paubTsun 1o

sadX3 eqep 103 soadeR

uotjdraosaq

JUT 103 qusaTeatnby

uonouny ()purid 10J pasn soroew Y], [°€] dqelL

Integer with Exactly N Bits

13

300

snfea 1sbo3utT

JILdXNOS XVYNXNOS XILSYAXNDS XILSVYHTXNDS XXNOS Tewrospexsy psubisun ue Jo andur X
anrea

MIAONDS | XYIWONDS XISYAONDS XLSYATONDS | XONDS | I9bs3ut Te3oo psubtsun ue yo andul o
antea I9b

MIANNDS | XYWNNDS XILSVYANNDS XLSYATONDS | XNNDS| -S3UT TewIosp psubtsun ue o andul n
(pesaed sas3deIeyd
1SI7J 93 AQ POUTWISISP ST 9sedq)

MIAINDS | XVWINDS XISVATNDS XISVATINDS | XINDS enTea 19bs3ut psubts e 3o ndur T
antea

JLAPNDS | XYWPNDS XISYAPNDS XLSYHTPNDS | XPNDS I9b23uT TeWTIOSP PaULTS B Jo Indul P

3 x3d3uT | 3 XBewjluT | 3 xX3SeJ JUT | 3 X3ISeS] JUT | 3 XJUT juT peubrsun

[n]] [n] [n]] I0 3UT

sadA3 ejep 103 soadel

uotydraossqg

103 jusTeatnby

uonoduny ()jueds 10J pasn soxoew YL, °€Y dqelL

13.9 Macros for scanf 301

5. Find the output of Code 13.10.

#include <stdio.h> Code
#include <inttypes.h> 13.10

int main()

{
printf ("INT8 MAX = %" PRIx8 "\n", INT8_ MAX);
printf ("UINT8 MAX = %"PRIx8"\n", UINT8 MAX) ;

6. What is the difference between int_least64 t and int64_t. Assume that
there is a 9-bit machine, can we use both data types in this machine?

Chapter 14)
Signals in C Shex

14.1 Introduction

Signals are generated when an interrupt is received. Signals can also be called as
interrupt signals. Interrupts are abnormal cases, and upon their occurrences, some
signals are generated, and when these signals are detected, some actions are
performed.

The interrupts are can be divided into two main categories:

— Hardware interrupts
— Software interrupts

When a signal is received, we understand that either some default actions are
performed or a user-defined function is executed. For instance, when Ctrl + C is
pressed, a software interrupt is generated. The default action is to terminate the
current process. However, a function, which is executed when Ctrl + C interrupt is
received, can be written. Signals can also be generated from OS kernel directly when
a hardware fault such as a bus error occurs or an illegal instruction is performed.

The default actions of signals are

The signal is discarded after it is received

The current process is terminated when the signal is received
A core file is written, and the process is stopped

The current process is stopped when the signal is received

The signals can be artificially generated. For this purpose, C provides the raise()
function with prototype

int raise(int sig)

where sig is an integer that defines the signal type, and they are defined as
macros in the header file <signal.h>

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 303
O. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45361-8_14&domain=pdf
https://doi.org/10.1007/978-3-031-45361-8_14#DOI

304 14 Signalsin C

Some of these macros are

#define SIGHUP
#define SIGINT
#define SIGQUIT

/* hangup */

/* interactive interrupt */

/* quit (ASCII FS) */

#define SIGILL /* illegal instruction (not reset when caught) */
#define SIGABRT /* used by abort, replace SIGIOT in the future */
#define SIGKILL 9 /* kill (cannot be caught or ignored) */

#define SIGBUS 10 /* bus error */

#define SIGALRM 14 /* alarm clock */

#define SIGTERM 15 /* software termination signal from kill */

o bW N

14.2 Signal Handling

When an interrupt occurs, a signal is generated, and the generated signal can be
caught by the built-in function called signal handler. The signal handler

— May let the default action to happen
— Can block the signal; however, this may not be possible for every signal
— A function can be called by the signal handler

The built-in signal handler is defined as
int (*signal(int sig, void (*func) ())) ()
which can be used as
signal (signalMacroName, pointerName)
if default action is to be performed, or it can be used as
signal (signalMacroName, functionName)

if a function with name functionName is to be called.

14.3 SIGINT

This signal macro is used to capture interactive attention signal. It can be considered
as interrupt signal generated by the user. For instance, this signal is generated when
the user presses Ctrl + C from the keyboard.

14.3 SIGINT 305

If default action is to be considered when
signal (signalMacroName, pointerName)

is executed, the pointer name can be SIG_DFL, which is a pointer to a system
default function SID_DFL(), and the process is terminated upon the reception of
interrupt signal.

If the pointer name is SIG_IGN, the signal action is ignored.

Example 14.1 Letus write a program involving signals. For this purpose, let us first
write an infinite loop as in Code 14.1.

#include <signal.h> Code
#include <stdio.h> 14.1

int main()

{

while (1)

{
printf("Infinite Loop \n");
sleep(l);

Signal handler for SIGINT is added as in Code 14.2.

#include <signal.h> Code
#include <stdio.h> 14.2

int main ()
{
signal (SIGINT, myFunc) ;

while (1)

{
printf("Infinite Loop \n");
sleep (1) ;

306 14 Signalsin C

We add the definition of signal handler function myFunc as in Code 14.3.

#include <signal.h> Code
#include <stdio.h> 14.3

void myFunc(int sig)
{

printf ("Interrupt signal is received: MACRO: %d\n", sig);
}

int main()
{
signal (SIGINT, myFunc) ;

while (1)

{
printf("Infinite Loop \n");
sleep (1) ;

Output(s) When the user pressed Ctrl + C, an interrupt signal is generated and it is
handled by the signal handler, that is, myFunc.

Infinite Loop
Infinite Loop
AClnterrupt signal is received: MACRO: 2
Infinite Loop
Infinite Loop
Infinite Loop
AClnterrupt signal is received: MACRO: 2
Infinite Loop
Infinite Loop

Note that Sleep() is defined in <windows.h> for Windows compiler, and sleep()
function is defined in <unistd.h> for Linux. However, without these headers, the
program works with warning.

Example 14.2 Signal handler can perform default action as well. The default action
SIG_DFL terminates the program.

14.3 SIGINT 307

#include <signal.h> Code
#include <stdio.h> 14.4

int main()
{
signal (SIGINT, SIG_DFL);

while (1)

{
printf("Infinite Loop \n");
sleep (1) ;

Output(s) When Ctrl + C is pressed, the signal handler performs the default action,
which is the termination of the program.

Infinite Loop

Infinite Loop

Infinite Loop

AC

...Program finished with exit code 0

Example 14.3 One of the default actions for the signal SIGINT is the SIG_IGN,
which ignores the interrupt request.

#include <signal.h> Code
#include <stdio.h> 14.5

int main()

{
signal (SIGINT, SIG_IGN) ;

while (1)

{
printf("Infinite Loop \n");
sleep (1) ;

Output(s) When Ctrl + C is pressed, the signal handler performs the default action
SIG_IGN, which disregards, that is, ignores the signal action. The program goes on
running.

Infinite Loop
Infinite Loop
Infinite Loop
AC

308 14 Signalsin C

Infinite Loop
Infinite Loop

144 SIGQUIT

This signal macro is similar to SIGINT; however, the interrupt signal is generated
when Ctrl + \ is pressed. Note that Ctrl + \ means we press Ctrl and \ at the same time.

Example 14.4 Interrupt signal can be generated by Ctrl + C or Ctrl + \. Some
compilers support both of them, some of them support only Ctrl + C. In this example,
we write a code that identifies whether Ctrl + C or Ctrl + \ is pressed.

We first write the program for SIGINT as in Code 14.6 where interrupt is
generated when Ctrl + C is pressed. Note that Ctrl + C means we press Ctrl and C
at the same time.

#include <stdio.h> Code
#include <signal.h> 14.6

void funel();

int main()
{
signal (SIGINT, funcl);

for (;;)
{
printf("Infinite Loop \n");
sleep (1) ;
}
}
void funel ()
{
printf ("\nCtrl+C is pressed \n");

}

Next, we add the signal handler for SIGQUIT, which is generated when Ctrl + \ is
pressed.

14.4 SIGQUIT

#include <stdio.h>
#include <signal.h>

void funel() ;
void fune2() ;

int main()

{
signal (SIGINT, funcl);
signal (SIGQUIT, func2);

for (;;)
{
printf("Infinite Loop \n");
sleep(1l);
}
}

void funel()

{
}
void fune2 ()

{
}

Code
14.7

printf ("\nCtrl+C is pressed \n");

printf ("\nCtrl+ \\ is pressed \n");

Output(s)
Infinite Loop
Infinite Loop
Infinite Loop
Infinite Loop

AC

Ctrl + C is pressed
Infinite Loop
Infinite Loop
Infinite Loop

A

Ctrl + \ is pressed
Infinite Loop
Infinite Loop
Infinite Loop

309

310

14.5 Artificial Signal Generation

14 Signalsin C

Interrupt signals can be generated by hardware, such as by pressing Ctrl + C, or they
can be generated by software. The raise() function can be used to generate interrupt

signals. The prototype of the raise() function is

int raise(int sig);

Example 14.5 In the previous examples, the interrupt signal SIGINT is generated
by pressing Ctrl + C. In this example, we generate the signal SIGINT using the raise

() function.

#include <signal.h>
#include <stdio.h>

void myFunc (int sig)

{
printf ("Received SIGINT Signal. Signal MACRO:

}
int main(void)

signal (SIGINT, myFunc) ;

raise (SIGINT) ;

printf ("Quits Program. \n");

Code
14.8

%d\n", sig);

printf ("Generating SIGINT Signal. Signal MACRO:

SIGINT) ;

Output(s)

Generating SIGINT Signal. Signal MACRO: 2
Received SIGINT Signal. Signal MACRO: 2
Quits Program.

SIG_ERR
It indicates an error in signal handling.

SIG_ACK
It indicates successful signal handling.

14.6 Some of the Most Used Signals 311

Example 14.6 In this example, we improve the previous example using the
SIG_ERR and return value of raise() function.

#include <signal.h> Code
#include <stdio.h> 14.9

void myFunc(int sig)

{
printf ("Has received the signal SIGTERM") ;

}

int main(void)
{
if (signal (SIGTERM, myFunc) == SIG_ERR)
{
printf ("Error while handling the signal.\n");

exit (0);
}
printf ("Generating the signal SIGTERM.\n");
if (raise(SIGTERM) != 0)
{

printf ("Error while generating the signal SIGTERM.\n");

exit (0);

Output(s)
Generating the signal SIGTERM.
Has received the signal SIGTERM

14.6 Some of the Most Used Signals

SIGHUP HUP is an abbreviation for “hang up.” This signal is generated when the
process terminates abruptly. The SIGHUP signal is generated when a remote
connection is lost.

SIGABRT The SIGABRT is generated when an error is detected by the program
and abort() function is called.

SIGFPE This signal is generated when overflow, division by zero, etc., occur in
arithmetic operations.

SIGSEGV This name is an abbreviation for signal segmentation violation. When a
program tries to read or write to a forbidden location, this signal is generated.

312 14 Signalsin C

SIGALRM This is a a timeout signal that is sent by alarm(). SIGALRM is sent
when the timer expires after a certain amount of time.

SIGILL It is an abbreviation for signal for illegal instruction. This signal is
generated when code is corrupted or an attempt is made to execute data, or the
program loads a corrupted dynamic library.

SIGUSR1 and SIGUSR2 The signals SIGUSR1 and SIGUSR2 may be used as
you wish. Handlers for these two signals can be written for simple inter-process
communication.

SIGTERM This signal is used to quit the program in a clean manner while
SIGKILL is an abnormal termination signal.

Problems

1. Explain the use of raise function in C signals.

2. How many ways are available to call the signal handler?

3. Write a C program that increments the value of a global variable every time
Ctrl + C is pressed. The program stays inside an infinite loop, and whenever the
global value reaches 10 the program terminates.

4. Write a C program that raises another interrupt signal whenever Ctrl + C is
pressed.

®

Check for
updates

Chapter 15
Threads in C

15.1 Introduction

The threads are introduced in C11 standard, and it is included in C17 and C23
standards as well. Threads enable parallel processing operations. Parallel processing
decreases the computation time of the scientific algorithms. Figure 15.1 illustrates
the concept of threads.

15.2 Thread Creation

To be able to use the thread facility in our programs, we need to include the header
file <threads.h> where macros, types, enumeration constants, and functions
that support multiple threads of execution are defined.

The data type pthread_t is used to uniquely identify a thread, and in a standard
compiler it is defined as

typedef unsigned long int pthread t;

Other implementations may differ.
Threads are created using pthread create () function

int pthread create(
pthread_t * thread,
const pthread attr_t * attr,
void* (*start_routine) (void *), void *arg

);

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 313
O. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45361-8_15&domain=pdf
https://doi.org/10.1007/978-3-031-45361-8_15#DOI

314 15 Threads in C

Fig. 15.1 Single versus Resources |Resources
multiple threads Resources, R R2 R2
Thread Thread |) Thread

which is used in a program as

pthread create(thread, attr, start_routine, arg)

In the function prototype,

thread: can be NULL, or a pointer to a pthread t object,

attr: isapointer to apthread attr t structure that specifies the attributes of
the new thread, and if attr is NULL, the default attributes are used

start routine :is the thread function

arg: is the argument to pass to the thread function, you can pass what is necessary
for the function using this parameter

int (return type) : if thread is created successfully, the return value will be
0, otherwise pthread create will return an error number of type integer

15.3 Parallel Processing Using Threads

Threads are used for parallel processing. Parallel processing decreases the compu-
tation latency of the complex algorithms. Threads are not useful if heavy computa-
tion is not performed. Since the use of threads brings some extra overheads to the
compiler, and if heavy computation is not performed, using threads may be a
disadvantage.

Example 15.1 We can calculate the size of a thread object using sizeof() operator.

#include <stdio.h> Code
#include <stdlib.h> 15.1
#include <pthread.h>

int main ()
{
pthread_t thrd; //thrd will hold the thread ID

printf("Size of pthread t is : %lu \n", sizeof(pthread t))

15.3 Parallel Processing Using Threads

Output(s)
Size of pthread tis:8

Example 15.2

In this example, we demonstrate parallel processing operation using a thread. First,

let us write an infinite loop in the main function as in Code 15.2.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int main ()

{

while (1)
{

sleep (1) ;

Code
15.2

printf ("Inside main \n");

Next, we write a function that contains an infinite loop as in Code 15.3. This

function will be used as a thread function.

void* myFunc (void* ptr)
{
while (1)
{
sleep (1) ;

Code
15.3

printf ("Inside myFunc \n");

We form the structure of our program as in Code 15.4.

316

15 Threads in C

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void* myFunc(void* ptr);

int main ()

{
while (1)
{
printf("Inside main \n");
sleep (1) ;
}
}
void* myFunc(void* ptr)
{
while (1)
{
sleep (1)
printf ("Inside myFunc \n");
}
}

Code
15.4

We define a thread ID as in Code 15.5. We also included <pthread.h> header

file.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void* myFunc(void* ptr);

int main ()

{
pthread t thrd; //thrd will hold the thread ID
while (1)
{
printf("Inside main \n");
sleep (1) ;
}
}
void* myFunc(void* ptr)
{
while (1)
{
sleep (1) ;
printf ("Inside myFunc \n");
}

Code
15.5

15.3 Parallel Processing Using Threads 317

Thread creation is done in Code 15.6.

#include <stdio.h> Code
#include <stdlib.h> 15.6
#include <pthread.h>

void* myFunc(void* ptr);

int main ()

{
pthread t thrd; //thrd will hold the thread ID
int re;

rc = pthread create(&thrd, NULL, myFunc, NULL);
if (xc)
{
printf ("Error : cannot create thread.");
exit(-1);
}
while (1)
{
printf ("Inside main \n");
sleep (1) ;
}
}
void* myFunc(void* ptr)
{
while (1)
{
sleep (1) ;
printf ("Inside myFunc \n");

Output(s) When we run the program, we get the following output. It is seen that
main function and thread function run in parallel.

Inside main
Inside main
Inside myFunc
Inside main
Inside myFunc
Inside main
Inside myFunc

Example 15.3 In this example, we show how to pass a message to thread function.
For this purpose, we use the third argument of the pthread_create() function as in
Code 15.7.

318 15 Threads in C

#include <stdio.h> Code
#include <stdlib.h> 15.7
#include <pthread.h>

void* myFunc(void* ptr);

int main ()

{
pthread t thrd; //thrd will hold the thread ID
char* msg = "myFunc is called";
int re;

rc = pthread create(&thrd, NULL, myFunc, (void*) msg) ;
if (rc)
{

printf ("Error : cannot create thread");

exit(-1);
}
while (1)
{
printf ("Inside main \n");
sleep (1) ;
}
}
void* myFunc(void* ptr)
{
while (1)
{
sleep(l) ;
char* msg;
msg = (char*) ptr;
printf ("%s \n", msg);
printf ("Inside myFunc \n");
}
}
Output(s)

Inside main
Inside main
myFunc is called
Inside myFunc
Inside main
myFunc is called
Inside myFunc
Inside main

15.3 Parallel Processing Using Threads

Example 15.4

319

We can use more than one thread function. In this example, two threads (thread

functions) are used.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void* myFuncl (void* ptr);
void* myFunc2 (void* ptr);

int main ()

{

int rel, rec2;

while (1)
{
printf ("Inside main \n");
sleep (1) ;
}
}
void* myFuncl (void* ptr)
{
while (1)
{
sleep(1l);

}
}
void* myFunc2 (void *threadid)
{
while (1)
{
sleep (1) ;

Code
15.8

pthread create(&thrl, NULL, myFuncl, NULL);

pthread create(&thr2, NULL, myFunc2, NULL);

printf ("Inside myFuncl \n");

printf ("Inside myFunc2 \n");

pthread t thrl, thr2; // will hold the thread IDs

Output(s)
Inside main
Inside myFuncl
Inside myFunc2
Inside main
Inside myFuncl
Inside main
Inside myFunc2

320

15 Threads in C

Example 15.5 Threads can be created for the same function. In this example, we

create two threads that use the same function.

#include <stdio.h> Code
#include <stdlib.h> 15.9
#include <pthread.h>
void* myFunc(void* ptr);
int main ()
{
pthread t thrl, thr2;
pthread create(&thrl, NULL, myFunc, NULL);
pthread create(&thr2, NULL, myFunc, NULL);
while (1)
{
printf("Inside main \n");
sleep(1l);
}
}
void* myFunc (void* ptr)
{
while (1)
{
sleep(1l);
printf("Inside myFunc \n");
}
}

Output(s) Two threads use the same function; for this reason, the message “Inside

myFunc” is printed twice after every “Inside main” message.

Inside main
Inside myFunc
Inside myFunc
Inside main
Inside myFunc
Inside myFunc
Inside main
Inside myFunc
Inside main
Inside myFunc

15.4 pthread_exit() Function 321
15.4 pthread_exit() Function

This function is used to terminate a thread. Its prototype is
void pthread exit(void* retval);

where retval is the pointer that contains the return status of the thread terminated.

Example 15.6 In this example, thread functions contain infinite loops. However,
when pthread_exit() function is met, the threads are terminated.

#include <stdio.h> Code
#include <stdlib.h> 15.10
#include <pthread.h>

void* myFuncl (void* ptr);
void* myFunc2 (void* ptr);

int main ()

{
pthread t thrl, thr2; // will hold the thread IDs
int rel, re2;
pthread create(&thrl, NULL, myFuncl, NULL);
pthread create(&thr2, NULL, myFunc2, NULL);
printf ("Thread ID1 is : %lu \n", thrl);
printf ("Thread ID2 is : %lu \n", thr2);
while (1)
{
printf("Inside main \n");
sleep(l);
}
}
void* myFuncl (void* ptr)
{
while (1)
{
sleep(l);

printf("Inside myFuncl \n");
pthread exit (NULL) ;

}
}
void* myFunc2 (void *threadid)
{
while (1)
{
sleep(l);

printf ("Inside myFunc2 \n");
pthread exit (NULL) ;

322

Output(s)

Thread ID1
Thread ID2
Inside main

15 Threads in C

is : 1
is:2

Inside myFuncl
Inside myFunc2

Inside main
Inside main
Inside main

Example 15.7 In this example, we show that when even the main function, that is,
main thread terminates, any thread can go on running until it is terminated.

int

{

}
{

#include <stdio.h> Code
#include <stdlib.h> 15.11
#include <pthread.h>

void* myFunc(void* ptr);

void* myFunc (void* ptr)

main ()
pthread t thrd; //thrd will hold the thread ID
pthread create (&thrd, NULL, myFunc, NULL);

while (1)

{
printf("Inside main \n");
sleep (1) ;
pthread exit (NULL) ;

}

while (1)
{
sleep (1) ;
printf ("Inside myFunc \n");

Output(s)
Inside main

Inside myFunc
Inside myFunc
Inside myFunc

15.5 pthread_join() Function 323

15.5 pthread_join() Function

The function

pthread join()

is used to wait for the termination of a target thread; if there are multiple threads
running, all the other threads wait for the termination of the target thread. Besides, it
is also possible that the termination of the main program before threads complete
their tasks. Using pthread_join() function, it is guaranteed that the threads complete
their run before the main program terminates.

The prototype of Pthread join() function is

int pthread join(pthread_t th, void** ptr);

where

th: is the thread id of the target thread for which all the other threads wait
ptr: is the pointer to the location of the target thread where exit status is stored

If the call for pthread join () is successful, zero is returned; otherwise, an
error number is returned.

Example 15.8 In this example, the function myFunc has an infinite loop, and it
never finishes. For this reason, the main part has no chance to be executed since it
waits for the termination of the thread.

#include <stdio.h> Code
#include <stdlib.h> 15.12
#include <pthread.h>

void* myFunc(void* ptr);

int main ()
{
pthread t thrd; //thrd will hold the thread ID

pthread create(&thrd, NULL, myFunc, NULL);
pthread join(thrd , NULL);

while (1)
{
printf ("Inside main \n");
sleep (1) ;
}
}
void* myFunc(void* ptr)
{
while (1)
{
sleep (1) ;
printf ("Inside myFunc \n");

324

Output(s)

Inside myFunc
Inside myFunc
Inside myFunc
Inside myFunc
Inside myFunc

15 Threads in C

Example 15.9 In this example, we use pthread_join() function for two threads.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void* myFuncl (void* ptr);
void* myFunc2 (void* ptr);

int main()
{
pthread t thrdil, thrd2;

pthread join(thrdl, NULL);
pthread join(thrd2, NULL);

printf ("Inside main \n");
}
void* myFuncl (void* ptr)
{
while (1)
{
printf ("Inside myFuncl \n");
sleep (1) ;
}
}
void* myFunc2 (void* ptr)
{
while (1)
{
printf ("Inside myFunc2 \n");
sleep (1) ;

pthread create(&thrdl, NULL, myFuncl, NULL);
pthread create(&thrd2, NULL, myFunc2, NULL);

Code
15.13

Output(s)

Inside myFuncl
Inside myFunc2
Inside myFuncl

15.5 pthread_join() Function 325

Inside myFunc2
Inside myFuncl

Example 15.10 In this example, threads use the same function; messages are passed
to the threads running in parallel.

#include <stdio.h> Code
#include <stdlib.h> 15.14
#include <pthread.h>

void* myFunc(void* ptr);

int main()

{
pthread_t thrdl, thrd2;

char *msgl = "Thread 1 executes";
char *msg2 = "Thread 2 executes";

pthread_create(&thrdl, NULL, myFunc, (void*) msgl) ;
pthread create(&thrd2, NULL, myFunc, (void*) msg2) ;

pthread join(thrdl, NULL);
pthread_join(thrd2, NULL);

printf ("Inside main \n");

}
void* myFunc(void* ptr)
{
while (1)
{
char *msg = (char *) ptr;
printf("%s \n", msqg);
sleep(1l);

Output(s)

Thread 1 executes
Thread 2 executes
Thread 1 executes
Thread 2 executes
Thread 1 executes

326 15 Threads in C

Example 15.11 In this example, we show how to get a message from a terminated
thread. Thread is terminated using pthread_exit() function. In Code 15.15, we first
write the message in yellow to be returned by terminated thread.

#include <stdio.h> Code
#include <stdlib.h> 15.15
#include <pthread.h>

void* myFunc(void* ptr);
char* ret="Function is terminated, and returned to main.";
int main ()
{
pthread t thrd;
void* ret ptr;
pthread create(&thrd, NULL, myFunc, NULL);
printf ("Inside main \n");
sleep (1) ;
}
void* myFunc(void* ptr)
{
while (1)
{
sleep (1) ;

printf ("Inside myFunc \n");

pthread exit(ret);

Returned message from the terminated thread is obtained in the second argument
of the pthread_join() function as shown in Code 15.16.

15.5 pthread_join() Function 327

#include <stdio.h> Code
#include <stdlib.h> 15.16
#include <pthread.h>

void* myFunc(void* ptr);
char* ret="Function is terminated, and returned to main.";
int main ()
{ pthread t thrd;
void* ret ptr;
pthread create(&thrd, NULL, myFunc, NULL);
pthread join(thrd, &ret ptr);
printf ("Inside main \n");
sleep (1) ;
printf ("%s \n", (char*) ret ptr);
}
void* myFunc(void* ptr)
{ while (1)
{
sleep (1) ;

printf ("Inside myFunc \n");

pthread exit(ret);

Output(s)

Inside myFunc

Inside main

Function is terminated, and returned to main.

Example 15.12 In Code 15.17, sky blue parts show the message passing from the
main function to thread, and yellow parts show message passing from terminated
thread to the main function.

328 15 Threads in C

#include <stdio.h> Code
#include <pthread.h> 15.17

int globalNum = ©5;

void* myFunc(void* ptr)

(printf ("Inside myFunc : Received localNum from main is: ");
printf("%d \n", *(int*)ptr);
pthread exit(&globalNum) ;

int main(void)

int localNum = 18;
int* ip;

pthread t thrd;
pthread create(&thrd, NULL, myFunc, &localNum);

pthread join(thrd, (void**)é&ip);

printf("Inside main: Recevied globalNum from myFunc is : ");
printf("%d \n", *ip);

Output(s)
Inside myFunc : Received localNum from main is: 18
Inside main: Recevied globalNum from myFunc is : 65

Example 15.13 In this example, the terminated thread returns the integer 51 to the
main function.

#include <stdio.h> Code
#include <pthread.h> 15.18

void* myFunc(void* ptr)

{
printf ("Terminating thread.\n");
pthread _exit((void*) ©51);

}

int main()

{

int num;

pthread_t thrd;

pthread_create (&thrd, NULL, myFunc, NULL) ;
pthread join(thrd, (void**) &num);

printf ("Num = %d\n",num) ;

15.6 pthread_self() Function
Output(s)

Terminating thread.
Num = 51

15.6 pthread_self() Function

329

This function is used to get the thread id of the current thread, and its prototype is

pthread_t pthread _self (void);

Example 15.14 In this example, thread IDs of two threads are printed both in the

main part and inside the threads.

finclude <stdio.h>
#include <pthread.h>

void* myFuncl (void* ptr);
void* myFunc2 (void* ptr);

int main()
{
pthread t thrdl, thrd2;

pthread_ join(thrdl, NULL);
pthread join(thrd2, NULL);

printf ("Inside main \n");
printf ("Thread ID1 is : %lu \n",thrdl);
printf ("Thread ID2 is : %lu \n\n",thrd2);

}
void* myFuncl (void* ptr)
{
pthread_t tidl = pthread_self();

printf ("Inside myFuncl \n");
printf ("Thread ID is : %1lu \n\n",tidl);

}

void* myFunc2 (void* ptr)

{
printf ("Inside myFunc2 \n");
pthread t tid2 = pthread_self();

printf ("Thread ID is : %lu \n\n",tid2);

Code
15.19

pthread create(&thrdl, NULL, myFuncl, NULL);
pthread create(&thrd2, NULL, myFunc2, NULL);

330

Output(s)
Inside myFuncl
Thread ID is : 140552266073664

Inside myFunc2
Thread ID is : 140552257680960

Inside main

Thread ID1 is : 140552266073664
Thread ID2 is : 140552257680960

15.7 pthread_equal() Function

15 Threads in C

It checks whether two threads are the same or not. If the two threads are equal, then
the function returns a nonzero value, otherwise zero is returned. The prototype of the

function is

int pthread_equal (pthread_t tidl, pthread t tid2);

Example 15.15 This example illustrates the use of the pthread_equal() function.

#include <stdio.h>
#include <pthread.h>

pthread t glb_tid;
void* myFunc(void* ptr);

int main ()

{
pthread t thrd;

glb_tid = thrd;

}
void* myFunc(void* ptr)

{

{
}
else

{
}

pthread create(&thrd, NULL, myFunc, NULL);

pthread join(thrd, NULL);

pthread t tid = pthread self();

if (pthread equal (glb_tid, tid))

printf ("Thread IDs are equal\n");

printf ("Thread IDs are NOT equal\n");

Code
15.20

15.9 pthread_detach() Function 331

Output(s)
Thread IDs are equal

15.8 pthread_cancel() Function

The pthread_cancel() function is used to cancel a target thread. The function
prototype is

int pthread cancel (pthread_t thread);

15.9 pthread_detach() Function

A thread is a joinable property by default, which means that when the thread
terminates some information about the thread, it stays in the memory, that is, some
artifacts about the terminated thread still stay. For instance, another thread can obtain
the return status of the terminated thread using pthread_join() function. Sometimes,
we do not care about the remaining information about the terminated thread, for
instance, its return status, etc., we just want the system to automatically clean up and
remove the thread artifacts when it terminates, and this is achieved using the
pthread_detach() function. The prototype of the function is

int pthread detach(pthread t thrd);

If you use NULL for second argument of the pthread_create() function, the
created thread will have joinable property.

The resources of a joinable threads cannot be freed by the thread itself; it can be
freed by the other threads using the pthread_join() function.

The resources of a detached thread are automatically freed upon its termination.
Once a thread is detached, it cannot be used with the pthread_join() function. If
synchronization is not an issue, and efficient use of the resources is required, it is
better to use pthread_detach().

332 15 Threads in C

Example 15.16 This example illustrates the use of the pthread_detach() function.

#include <stdio.h> Code
finclude <stdlib.h> 15.21
#include <pthread.h>

void* myFunc(void* ptr);
int main()
{ pthread t thrd;
pthread create(&thrd, NULL, myFunc, NULL);
pthread detach (thrd) ;
printf("Inside main \n");
sleep (1) ;
}
void* myFunc(void* ptr)

{
printf ("Inside myFunc \n");

}

Output(s)
Inside main
Inside myFunc

15.10 Synchronizing Threads with Mutexes

Threads can increase the performance of the systems requiring especially heavy
computations. Race is a concept that arises when more than one threads perform
operations on shared resources. For instance, assume that a global variable is
processed by two threads, and one thread increments the value of global variable
and the other decrements the global variable, so what will be the result?

In this case, a race condition arises, and the result that arrives to the digital gate
outputs will be the winner. Race arises from propagation delays of the electronic
devices.

The race problem appearing in threads is eliminated using mutexes in C language.
Mutexes have two basic functions: lock and unlock. Before a thread accesses a
shared resource, lock function is called, which prevents other threads from using the
shared resource; and when the thread is done with the shared resource, it calls the
unlock function, and the other threads can use the shared resource.

15.10 Synchronizing Threads with Mutexes 333

If a mutex is unlocked and a thread calls lock, the mutex locks and the thread
continues. If, however, the mutex is locked, the thread is blocked until the thread
holding the lock calls unlocks.

The mutex variable is defined as

pthread mutex t mtx

the mutex variable is initialized using pthread mutex init whose proto-
type is

int pthread mutex init(
pthread mutex t *mp,
const pthread mutexattr_t *attr

) ;
which can be used for the defined mutex variable as

pthread mutex init (&mtx, NULL);

and this expression is equivalent to

pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;

The prototypes of the lock, trylock, unlock, and destroy functions are

int pthread mutex_ lock (pthread mutex t* mtx);
int pthread mutex_ trylock (pthread mutex t* mtx);
int pthread mutex_unlock (pthread mutex_t* mtx);

int pthread mutex destroy(pthread mutex t* mtx);
Lock function is used for a mutex variable as

int rec = pthread mutex lock (&mtx) ;

if (rc)

{
perror ("Error in locking mutex");
pthread_exit (NULL) ;

Unlock function is used for a mutex variable as

334 15 Threads in C

rc = pthread mutex unlock (&mtx) ;
if(xre)
{

perror ("Error in unlocking mutex ") ;
pthread_exit (NULL) ;
}

Destroy function is used for a mutex variable as

rc = pthread mutex destroy (&mtx) ;
if (rc)
{

perror ("Error in destroying mute ") ;
pthread_exit (NULL) ;
}

pthread_mutex_destroy() returns zero after completing successfully. Any other
returned value indicates that an error occurred.

Example 15.17 In this example, we show how synchronization is achieved using
the mutex data type pthread_mutex_t. First, let us introduce a global variable that
will be used by two functions.

finclude <stdio.h> Code
#include <pthread.h> 15.22

int glb_var = 0;

int main()

{

}

Let us add the function myFuncl to the code; it increments the value of the global
variable.

#include <stdio.h> Code
#include <pthread.h> 15.23
int glb var = 0;

void* myFuncl (void* ptr);

int main ()

{

}
void* myFuncl (void* ptr)
{
for(long unsigned indx = 0; indx < 100; indx++)
{
glb var++;

}

15.10 Synchronizing Threads with Mutexes

335

Let us add the function myFunc2 to the code as shown in Code 15.24; it

decrements the value of the global variable.

finclude <stdio.h>
#include <pthread.h>

int glb_var = 0;

void* myFuncl (void* ptr);
void* myFunc2 (void* ptr);

int main()

{
}

void* myFuncl (void* ptr)

{
for (long unsigned indx = 0; indx <
{

glb_var++;
}
}
void* myFunc2 (void* ptr)

{

{
glb var--
}

Code
15.24

100; indx++)

for(long unsigned indx = 0; indx < 100; indx++)

The threads for these two functions are created in Code 15.25.

336

15 Threads in C

#include <stdio.h>
#include <pthread.h>

int glb_var = 0;
void* myFuncl (void* ptr);
void* myFunc2 (void* ptr);

int main()
{
pthread t thrdl, thrd2;

pthread create(&thrdl,
pthread create(&thrd2,
}
void* myFuncl (void* ptr)
{
for(long unsigned indx
{
glb_var++;
}
}
void* myFunc2 (void* ptr)
{
for(long unsigned indx
{
glb_var--;
}

Code
15.25
NULL, myFuncl, NULL) ;
NULL, myFunc2, NULL) ;
= 0; indx < 100; indx++)
= 0; indx < 100; indx++)

pthread_join() functions are added to the program as shown in Code 15.26.

15.10 Synchronizing Threads with Mutexes

337

#include <stdio.h>
#include <pthread.h>

int glb_yar = 0;

void* myFuncl (void* ptr);
void* myFunc2 (void* ptr) ;

int main|()

{
pthread t thrdl, thrd2;

pthread create(&thrdl, NULL, myFuncl, NULL);
pthread create(&thrd2, NULL, myFunc2, NULL);

pthread join(thrdl, NULL) ;
pthread join(thrd2, NULL) ;

printf ("Inside main \n");

printf ("Glob num is %d \n", glb_var);
}
void* myFuncl (void* ptr)

{

{
glb_var++;
}
}
void* myFunc2 (void* ptr)

{

{
glb var--;
}

Code
15.26

for(long unsigned indx = 0; indx < 100; indx++)

for(long unsigned indx = 0; indx < 100; indx++)

If we run the Code-15.26, we get the output

Inside main
Glob num is 0

If we change the loop iteration number from to
program we get

Inside main
Glob num is 5572371

if we run it again we get

Inside main
Glob num is —904775

and run the

338 15 Threads in C

If we run the program over and over again, we see that every time we see a
different number for global variable value. This is due to the race event.

To eliminate the race effect, we use pthread_mutex_t data as in Code 15.27.
Initialization on mutex variable is performed and is destroyed when the program
finishes.

#include <stdio.h> Code
#include <pthread.h> 15.27
int glb_var = 0;
void* myFuncl (void* ptr);
void* myFunc2 (void* ptr);
pthread mutex t mtx;
int main()
{
pthread t thrdl, thrd2;
pthread create(&thrdl, NULL, myFuncl, NULL);
pthread create(&thrd2, NULL, myFunc2, NULL);
pthread_join(thrdl, NULL);
pthread join(thrd2, NULL);
if (pthread mutex init(&mtx, NULL) != 0) ({
printf ("\n mutex init has failed\n");
return 1;
}
printf("Inside main \n");
printf("Global number is : % d \n", glb_var);
pthread mutex destroy (&mtx) ;
}
void* myFuncl (void* ptr)
{
for(long unsigned indx = 0; indx < 1000000000; indx++)
{
glb_var++;
}
}
void* myFunc2 (void* ptr)
{
for(long unsigned indx = 0; indx < 1000000000; indx++)
{
glb_var--;
}
}

15.10 Synchronizing Threads with Mutexes

339

Finally, we add lock and unlock functions to the beginning and the end of the

functions as shown in Code 15.28.

#include <stdio.h>
#include <pthread.h>

int glb_var = 0;

void* myFuncl (void* ptr);
void* myFunc2 (void* ptr);

pthread mutex t mtx;

int main|()

{
pthread t thrdl, thrd2;

pthread create(&thrdl, NULL, myFuncl, NULL);
pthread create(&thrd2, NULL, myFunc2, NULL);

pthread join(thrdl, NULL);
pthread join(thrd2, NULL);

if (pthread mutex_init(&mtx, NULL) !'= 0) {
printf ("\n mutex init has failed\n");
return 1;

}
printf("Inside main \n");
printf("Global number is : % d \n", glb_var);

pthread mutex_destroy (&mtx) ;
}
void* myFuncl (void* ptr)
{

pthread mutex lock (&mtx) ;

for(long unsigned indx = 0; indx < 1000000000;
{ glb_var++;
;thread_mutex_unlock(&mtx);

ioid* myFunc2 (void* ptr)

{ pthread mutex lock (&mtx) ;

for(long unsigned indx = 0; indx < 1000000000;
{
glb_var--;
}
pthread mutex unlock (&mtx) ;

Code
15.28

indx++)

indx++)

340 15 Threads in C

When we run Code 15.28 several times, we always get the output

Inside main
Glob num is 0

Thus, race event is eliminated and synchronization is achieved.

Problems
1. Fill the dots in Code 15.29.

void* myFunc(void* ptr); Code
15.29

int main ()

........... // define a thread ID here
........... // create a theread for the function myfunc

while (1)

printf ("Inside main \n");
sleep (1) ;

}

void* myFunc(void* ptr)
{
while (1)
{
sleep (1) ;
printf ("Inside myFunc \n");

2. For the previous problem, using for-loop creates 10 threads for myFunc in Code
15.29.

3. Why do we use the pthread_join() function? What happens if we do not use this
function?

4. Explain the use of the pthread_detach() function.

5. Fill the dots in Code 15.30 such that msg is passed to myFunc.

15.10 Synchronizing Threads with Mutexes

341
#include <stdio.h> Code
#include <pthread.h> 15.30
void* myFunc(void* ptr);
int main ()
{
pthread t thrd;
char* msg = "myFunc is called";
pthread create(&thrd, NULL, myFunc,);
while (1)
{
printf ("Inside main \n");
sleep (1) ;
}
}
void* myFunc(void* ptr)
{
while (1)
{
sleep (1) ;
printf("%s \n", msqg);
printf ("Inside myFunc \n");
}
}
6. Fill the dots in Code 15.31.
pthread mutex t mtx; Code
15.31
void* myFuncl (void* ptr)
{
......... // write mutex lock function here
for(long unsigned indx = 0; indx < 1000000000; indx++)

{
glb_var++;

......... // use mutex unlock function here

®

Check for
updates

Chapter 16
Atomic Data Types

16.1 How to Define an Atomic Data Type?

The type _Atomic is used to avoid the race conditions when more than one thread
tries to update the value of a variable simultaneously. The atomic data types are
defined in <stdatomic.h>.

Atomic data types are available since C11.

Example 16.1 Three different methods can be used to define an atomic variable as
in Code 16.1.

#include <stdio.h> Code
#include <stdatomic.h> 16.1

int main()
{
_Atomic int var_namel; // lst method

atomic_int var_name2; // 2nd method

_Atomic(int) var_name3; // 3rd method

Example 16.2 The size of atomic data type can be calculated using the sizeof()
operator.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 343
O. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45361-8_16&domain=pdf
https://doi.org/10.1007/978-3-031-45361-8_16#DOI

344 16 Atomic Data Types

#include <stdio.h> Code
#include <stdatomic.h> 16.2
int main()
{
printf("Size of int is : %lu \n", sizeof(int));
printf("Size of atomic_int : %lu \n", sizeof(atomic_int));
printf("Size of Atomic(int) : %lu \n", sizeof (_Atomic(int)));
}
Output(s)

Size of int is : 4
Size of atomic_int : 4
Size of _Atomic(int) : 4

Atomics are optional features of compilers. So how can we check whether the

compiler we use supports atomic types or not? There is a macro

__STDC_NO_ATOMICS

If this macro is defined, then the compiler does NOT support atomics.

Example 16.3 In this example, we show how to check whether the compiler

supports atomic data types or not.

#include <stdio.h> Code
#include <stdatomic.h> 16.3

int main()
{
#ifdef STDC NO ATOMICS
printf ("Atomics are NOT supported.");
#else
printf ("Atomics are supported.");
#endif

Output(s)
Atomics are supported.

16.2 Atomic Integer Types

Atomic integer data types can be listed as

16.2 Atomic Integer Types 345

Atomic type name Direct type
atomic_bool _Atomic bool
atomic_char _Atomic char
atomic_schar _Atomic signed char
atomic_uchar _Atomic unsigned char
atomic_short _Atomic short
atomic_ushort _Atomic unsigned short
atomic_int _Atomic int
atomic_uint _Atomic unsigned int
atomic_long _Atomic long
atomic_ulong _Atomic unsigned long
atomic_llong _Atomic long long
atomic_ullong _Atomic unsigned long long
atomic_char8_t _Atomic char8_t
atomic_charl6_t _Atomic charl6_t
atomic_char32 t _Atomic char32_t
atomic wchar t _Atomic wchar_t
atomlc int_ 1east8 t _Atomic int_least8_t
atomlc_ulnt_leastS_t _Atomic uint_least8 t
atomic_int leastl6_t _Atomic int leastl6_t
atomic_uint_leastl6_t _Atomic uint_leastl6_t
atomic_int least32_t _Atomic int least32_t
atomic_uint least32_t _Atomic uint_least32_t
atom:Lc int__ least64 t _Atomic int least64_t
atomlc ulnt least64 t _Atomic uint least64_t
atomlc_lnt_fastS_t _Atomic int_fast8 t
atomic_uint fast8_t _Atomic uint fast8_t
atomic_int fastlé_t _Atomic int_fastl6_t
atomic_; u:l.nt fast16 t _Atomic uint_fastlé_t
atomlc int fast32 t _Atomic int_ fast32 t
atomic_; u:Lnt fast32 _t _Atomic ulnt fast32 t
atom1c_1nt_fast64_t _Atomic 1nt_fast64_t
atomic_uint_fast64_t _Atomic uint_ fasté4_t
atomic_intptr_t _Atomic intptr_t
atomic_uintptr_t _Atomic uintptr_t
atomic_size t _At _Atomic size_ t
atomic_ptrdiff t _Atomic ptrdiff t
atomic_intmax_t _Atomic intmax t
atomic_uintmax t _Atomic uintmax t

Other atomic data types can be defined using the type qualifier as
_Atomic (know_data_type)
For instance, we can define atomic float, double, and long double as
_Atomic (float) _Atomic (double) _Atomic(long double)

Typedef can also be used for atomic data types, for instance,

346 16 Atomic Data Types
typedef Atomic(double) atomic_double

then an atomic double variable can be defined as

atomic_double var_name;

Example 16.4 In this example, we define an atomic structure data type.

#include <stdio.h> Code
#include <stdatomic.h> 16.4

int main(void)
{
struct myStruct

{
int x;
double y;
Y

_Atomic(struct myStruct) s;

16.3 Atomic Pointers

Pointers are data types. As with any other data type, we can define atomic pointer
data types.

Pointer to an Atomic data
Pointer to an atomic float is defined as

_Atomic float a;
_Atomic float* f£p; // pointer to an atomic float
fp = &a;

Atomic Pointer to an Ordinary Data
An atomic pointer to a float is defined as

16.4 Race Prevention by Atomic Variables 347

float a;
float* _Atomic fp; // atomic pointer to a float
fp = &a; // OK!

Atomic Pointer to an Atomic Data
An atomic pointer to an atomic float is defined as

_Atomic float a;

_Atomic float * _Atomic fp;// atomic pointer to an atomic float

fp = &a;

16.4 Race Prevention by Atomic Variables

Example 16.5 Atomic variables are used to prevent race conditions. In this exam-
ple, we illustrate how the atomic variables eliminate the race condition. Let us define
two global variables, one is atomic and the other is normal, as in Code 16.5.

#include <stdio.h> Code
#include <pthread.h> 16.5
#include <stdatomic.h>

int glb_varl = 0;

_Atomic int glb var2 = 0;

int main()

{

}

We add one thread function that increments the global variables as in Code 16.6.

348 16

Atomic Data Types

#include <stdio.h>
#include <pthread.h>
#include <stdatomic.h>

int glb _varl = 0;
_Atomic int glb var2 = 0;

void* myFuncl (void* ptr);

int main/()

{
}

void* myFuncl (void* ptr)

{

{
glb varl++;
glb var2++;

for(long unsigned indx = 0; indx < 10000000;

Code
16.6

indx++)

We add a second thread function that decrements the global variables as in Code

16.7.

#include <stdio.h>
#include <pthread.h>
#include <stdatomic.h>

int glb_varl = 0;
_Atomic int glb var2 = (;

void* myFuncl (void* ptr);
void* myFunc2 (void* ptr);

int main()

{
}

void* myFuncl (void* ptr)

{

{
glb_varl++;
glb_var2++;
}
}
void* myFunc2 (void* ptr)

{

for (long unsigned indx = 0; indx < 1
{

glb varl--;

glb var2--;
}

for (long unsigned indx 0; indx < 10000000;

Code
16.7

indx++)

indx++)

16.4 Race Prevention by Atomic Variables

We create two threads as in Code 16.8.

#include <stdio.h>
#include <pthread.h>
#include <stdatomic.h>

int glb_varl = 0;
_Atomic int glb_var2 = 0;

void* myFuncl (void* ptr);
void* myFunc2 (void* ptr);

int main ()
{
pthread_t thrdl, thrd2;

pthread create(&thrdl, NULL, myFuncl, NULL) ;
pthread create(&thrd2, NULL, myFunc2, NULL);

}
void* myFuncl (void* ptr)

{

for (long unsigned indx 0; indx < 10000000;
{
glb_varl++;
glb_var2++;
}
}
void* myFunc2 (void* ptr)
{
for(long unsigned indx = 0; indx < 10000000;
{
glb_varl——;
glb_var2--;

Code
16.8

We add the pthread_join() functions as in Code 16.9.

349

350

16 Atomic Data Types

#include <stdio.h>
#include <pthread.h>
#include <stdatomic.h>

int glb_varl = 0;
_Atomic int glb_var2 = 0;

void* myFuncl (void* ptr);
void* myFunc2 (void* ptr);

int main ()

{
pthread t thrdl, thrd2;

pthread create(&thrdl, NULL,
pthread create(&thrd2, NULL,

pthread join(thrdl, NULL);
pthread join(thrd2, NULL);
printf ("Inside main \n");
printf("glb varl is %
printf("glb var2 is %
}
void* myFuncl (void* ptr)
{
for(long unsigned indx = 0;
{
glb_varl++;
glb_var2++;
}
}
void* myFunc2 (void* ptr)

{

for(long unsigned indx 0;
{

glb_varl--;

glb_var2--;

Code
16.9
myFuncl, NULL);
myFunc2, NULL) ;
glb varl);
glb var2);
indx < 10000000; indx++)
indx < 10000000; indx++)

Output(s) When the program is run, we get the output.

glb_varl is —112381
glb_var2 is 0

From these outputs, it is seen that for nonatomic global variable, race condition
exists, whereas, for atomic global variable, race condition is eliminated.

Example 16.6 This example is an improved version of the previous example. In this
example, we create 20 threads that use the same function. We have one global atomic
integer and a normal global integer variable. The thread function increments both

variables.

16.4 Race Prevention by Atomic Variables 351

#include<stdio.h> Code
#include<stdatomic.h> 16.10
#include<pthread.h>

void* myFunc(void* ptr);

_Atomic int a glb = 0;
int glb = 0;

int main()
{
pthread_t thrd[20];

for(int 1 = 0; 1 < 20; i++)
pthread create(&thrd[i], NULL, myFunc, NULL);

for(int i = 0; i < ; oi++)
pthread join(thrd[i], NULL);

printf ("The value of atomic global variable a _glb is %d\n", a_glb);

printf ("The value of global variable glb is %d \n", glb);
}

void* myFunc(void* ptr)

{
for(int indx = 0; indx < |)0; indx++)
{

a_glb++; // atomic operation

glb++;

}
pthread_exit (NULL) ;

Output(s) When the program is run, we get the outputs.

The value of atomic global variable a_glb is 200000
The value of global variable glb is 197760

The for-loop is run 10000 times, and there are 20 threads. This means that global
variables are incremented 20 x 10000 = 200000, and this value is displayed for
atomic global variable, whereas, for nonatomic global variable, a smaller number is
displayed.

From the outputs, it is seen that race condition exists for nonatomic global
variable.

Example 16.7 If a is an atomic integer, then a++ is an atomic operation, whereas
a = a+1 is not an atomic operation. If the thread function in the previous example is
replaced by the function in Code 16.11, race condition is not eliminated for atomic
variable.

352 16 Atomic Data Types

Code
void* myFunc(void* ptr) 16.11
{ for(int indx = 0; indx < 10000; indx++)
{ a glb = a glb + 1; // NOT atomic operation
glb = glb + 1;

}
pthread exit (NULL) ;

If the thread function in Code.16.10 is replaced by the function in Code 16.11, we
get the outputs

The value of atomic global variable a_glb is 111918
The value of global variable glb is 133081

16.5 Lock-Free Atomic Types

Some hardware structures do not support atomic types, and when atomic types are
met, parallel processing operations are performed using lock and unlock functions as
in mutex lock and unlock functions. Atomic operations are fast, but parallel
processing performed by lock and unlock functions are slower compared to atomic
operations.

Some atomic types are forced to be lock-free; for instance, atomic flags are all
lock-free.

To understand whether an atomic data type is lock-free or not, we can check its
corresponding macro value. The macros of some atomic types are listed as follows:

Atomic Type Lock Free Macro
atomic_bool ATOMIC_BOOL_LOCK_ FREE
atomic_char ATOMIC_CHAR LOCK_FREE
atomic_charl6_t ATOMIC_CHAR16_T LOCK_FREE
atomic_char32_t ATOMIC_CHAR32 T LOCK_FREE
atomic_wchar_t ATOMIC_WCHAR T LOCK_FREE
atomic_short ATOMIC_SHORT_LOCK_FREE
atomic_int ATOMIC_ INT_ LOCK_FREE
atomic_long ATOMIC_LONG_LOCK_ FREE
atomic_llong ATOMIC_LLONG_LOCK_FREE
atomic_intptr_t ATOMIC_POINTER_LOCK_FREE

Macros can have three different values:

16.6 Atomic Assignments, Operators, and Functions 353

0 which indicates that atomic type is never lock-free
1 which indicates that atomic type is sometimes lock-free
2 which indicates that atomic type is always lock-free

Example 16.8 We can check whether atomic integer type is lock-free or not in our
computer using Code 16.12.

#include<stdio.h> Code
#include<stdatomic.h> 16.12
#include<pthread.h>

int main()

{ if (ATOMIC_INT LOCK_ FREE==0)
(printf("atomic int type is never lock-free");
;lse if (ATOMIC_INT LOCK FREE==1
(printf("atomic int type is sometimes lock-free");
élse if (ATOMIC_INT LOCK FREE==2
{

printf("atomic int type is always lock-free");

}

Output(s) atomic_int type is always lock-free

16.6 Atomic Assignments, Operators, and Functions

Some operators operating on atomic variables are race-free, that is, they are atomic
operators. Not all the operators are atomic ones.
For instance;

_Atomic int a = 0;
a++; // this is an atomic operation
a=a+ 1; // this is NOT an atomic operation

The atomic operators are listed as

a+t+ a-- --a ++a
a+=b a-=>b a *= b a/=b a %=>b
a & b a |=b a *“=>b a>=Db a <<=b

354 16 Atomic Data Types
16.7 Atomic Functions

In this section, we explain some of the atomic functions.

16.7.1 atomic_is_lock_free() Function

The prototype of this function is

bool atomic_is lock free(const volatile A *obj);

This function returns true if the atomic operations on all objects of type A are
lock-free.

Example 16.9

#include<stdio.h> Code
#include<stdatomic.h> 16.13

int main()
{
_Atomic int a;
printf (" Atomic int a is %s \n", \
atomic_is_lock_ free(&a) ? "lock-free" : "not lock-free");

Output(s) _Atomic int a is lock-free

16.7.2 atomic_fetch_key() Function

The prototype of this function is

C atomic_fetch key(volatile A* obj, M arg);

where C, nonatomic type, is the value held previously by the atomic object
pointed to by obj, and arg is the argument supplied.

This function performs arithmetic and bitwise computations. The operations are
applicable to atomic integer type. The operations that can be performed are

16.7 Atomic Functions 355

key op computation

add + addition

sub - subtraction

or | bitwise inclusive or
xor bitwise exclusive or
and & bitwise and

If key = add, then we have the addition function

C atomic_fetch_add(volatile A* obj, M arg);

Example 16.10 This example illustrates the use of the atomic_fetch_add() function.

#include <stdio.h> Code
#include <stdatomic.h> 16.14

int main(void)
{
_Atomic int a = 6;
int ret;
ret=atomic_fetch_add(&a, 8); // a=a+8

printf("a = %d ", a);

printf("ret = %d", ret);

Output(s) a=14 ret=6

Example 16.11 This example illustrates the use of the atomic_fetch_sub() function.

#include <stdio.h> Code
#include <stdatomic.h> 16.15

int main(void)
{
_Atomic int a = 10;
int ret;
ret=atomic_fetch sub(&a, 3); // a=a-3

printf("a = %d ", a);

printf("ret = %d", ret);

356 16 Atomic Data Types

Output(s) a=7 ret=10

Example 16.12 This example illustrates the use of the atomic_fetch_xor() function.

#include <stdio.h> Code
#include <stdatomic.h> 16.16

int main(void)
{

)%OF ;
OxFO;

_Atomic unsigned char a
_Atomic unsigned char b
_Atomic unsigned char ret;

ret=atomic_fetch xor(&a, b); // a = a XOR b
printf ("a = 0x%X ", a);

printf ("ret = 0x0%X", ret);

Output(s) a = OxFF ret = OxOF

Example 16.13 The function atomic_fetch_add() is race-free. This example shows
that if we perform classical summation, race condition is not avoided, whereas
performing summations using atomic_fetch_add() with an atomic variable avoids
race problem.

16.7 Atomic Functions 357

#include<stdio.h> Code
#include<stdatomic.h> 16.17
#include<pthread.h>

void* myFunc(void* ptr);

_Atomic int a = 0;
int b = 0;

int main()

{
pthread t thrd[20];
for(int i = 0; 1 < 20; i++)
pthread create(&thrd[i], NULL, myFunc, NULL);
for(int i = 0; 1 < 20; i++)
pthread join(thrd[i], NULL);
printf ("The value of atomic global a is %d\n", a);
printf ("The value of global variable b is %d \n", b);
}
void* myFunc (void* ptr)
{
for(int indx = 0; indx < 10000; indx++)
{
atomic_fetch add(&a, ¢); // a = at+8, atomic operation
b=b + 8; // not atomic operation
}
pthread exit (NULL) ;
}
Output(s)

The value of atomic global a is 1600000
The value of global variable b is 976200

The results show that when classical summation is performed by threads, race
occurs, whereas the function atomic_fetch_add() avoids the race problem.

16.7.3 atomic_store() Function
The prototype of the function is
void atomic_store(volatile A* obj , C desired);

where A is an atomic data type and C is a normal, that is, nonatomic data type.

358 16 Atomic Data Types

This is a write operation; it atomically, that is, race freely, performs the operation

*obj=desired

Example 16.14 This example illustrates the use of the atomic_store() function.

#include <stdio.h> Code
#include <stdatomic.h> 16.18

int main(void)
{
_Atomic int a;

atomic_store(&a, 17); // atomic write operation

printf("a = %d", a);

Output(s) a =17

16.7.4 atomic_load() Function

The prototype of the function is

C atomic_load(const volatile A* obj);

where A is an atomic data type and C nonatomic data type.
This is atomic read operation. It returns the current value of the atomic variable
pointed by obj, that is, it performs

C=*obj

16.7 Atomic Functions 359

Example 16.15 This example illustrates the use of the atomic_load() function.

#include <stdio.h> Code
#include <stdatomic.h> 16.19

int main(void)

{
_Atomic int a = 30;
int ret;

ret = atomic_load(&a); // atomic read operation

printf("a = %d", a);

Output(s) a =30

16.7.5 atomic_exchange() Function

The prototype of the function is

C atomic_exchange(volatile A* obj, C desired);

where A is an atomic data type and C nonatomic data type.
This is atomic r read—modify—write operation. The value pointed by obj is
replaced with desired, and the value obj held previously is returned.

Example 16.16 This example illustrates the use of the atomic_exchange() function.

#include <stdio.h> Code
#include <stdatomic.h> 16.20

int main(void)

{
_Atomic int a 0
int desired = 20;
int C;

printf ("Value of a is : %d \n", a);
C = atomic_exchange(&a, desired); // atomic operation

printf ("New value of a is : %d \n", a);
printf ("Old value of a is : %d", C);

360 16 Atomic Data Types

Output(s)

Value of a is : 30
New value of a is : 20
Old value of a is : 30

16.7.6 Comparison Functions

We have the atomic comparison functions

atomic_compare exchange weak ()
atomic_compare exchange strong()

The prototypes of these functions are

_Bool atomic_compare exchange strong(volatile A* obj, \
C* expected, C desired)

_Bool atomic_compare_ exchange weak(volatile A *obj, \
C* expected, C desired);

The value pointed to by object is compared to the value pointed to by expected
and

— If they are equal, the value pointed to by object is replaced with desired.
If they are not equal, the value pointed to by expected is updated with the value
pointed to by object.

Exchange weak is preferred in loops for better performance. Exchange weak
sometimes returns false if even values are equal to each other.

16.7 Atomic Functions

361

Example 16.17 This example illustrates the use of atomic comparison functions.

#include <stdio.h> Code
#include <stdatomic.h> 16.21
int main(void)
{
_Atomic int a = 23;
_Atomic int b = 26;
int expected =
int desired = 56;
_Bool ret;
printf("a is : %d \n", a);
printf ("expected is : %d \n", expected);
printf("desired is : %d \n", desired);
ret=atomic_compare_ exchange strong(&a, &expected, desired);
printf ("Comparison result is : %d \n",ret);
printf("a is : %d \n", a);
printf ("expected is : %d \n\n", expected);
printf("b is : %d \n", b);
printf ("expected is : %d \n", expected);
printf("desired is : %d \n", desired);
ret=atomic_compare_ exchange strong(&b, &expected, desired);
printf ("Comparison result is : %d \n",ret);
printf("b is : %d \n", b);
printf ("expected is : %d \n\n", expected);
}
Output(s)
ais:23

expected is : 23

desired is : 56
Comparison result is : 1
ais: 56

expected is : 23

bis: 26

expected is : 23
desired is : 56
Comparison result is : 0
bis: 26

expected is : 26

362 16 Atomic Data Types
16.7.7 atomic_flag Macro

It is an atomic Boolean type. This atomic type is guaranteed to be lock-free. The

atomic type atomic_bool can perform load and store operations, whereas

atomic_flag does not provide load or store operations. It has two states, set and clear.
The macro

ATOMIC_FLAG_INIT

initializes an atomic_flag variable to the clear state.

If an atomic_flag variable is not initialized, it gets an indeterminate state.

The function

atomic_flag test_and_set()

with prototype
_Bool atomic_flag test and set(volatile atomic_flag *object);

sets an atomic_flag variable to true, and it returns the value of variable before the
update.

The function

atomic_flag clear()
with prototype

void atomic_flag clear(volatile atomic_flag *object);

sets an atomic_flag variable to false. There is no return value for this function.

16.7 Atomic Functions

Example 16.18 This example illustrates the use of the atomic flag functions.

Code
16.22

#include <stdio.h>

#include <stdatomic.h>

int main(void)

{
atomic_flag flg = ATOMIC_FLAG_INIT;
_Bool ret;
printf ("Initial flag value is : %d\n", £lqg);
ret=atomic_flag test_and_set(&flg);
printf ("After set, flag value is : %d\n", £flg);
printf ("After set, returned value is : %d\n", ret);

atomic_flag clear(&flg);

printf ("After clear, flag value is : %d\n", £flg);

Output(s)

Initial flag value is : 0

After set, flag value is : 1
After set, returned value is : 0
After clear, flag value is : 0

16.7.8 atomic_init() Function

The prototype of the function is

void atomic_init(volatile A *obj, C value);

where A is an atomic data type and C nonatomic data type.
This function initializes the atomic variable A by the value of V. Although this
function initializes an atomic variable, it is NOT a race-free function.

363

364 16 Atomic Data Types

Example 16.19 This example illustrates the use of the atomic_init() function.

#include <stdio.h> Code
#include <stdatomic.h> 16.23

int main(void)

{
_Atomic int a;
int b = ;

atomic_init(&a,b); // the same as: atomic init (&a,18)

printf("a = %d\n", a);

Output(s) a =18
ATOMIC_VAR_INIT Macro
This macro is defined in C11 as

#define ATOMIC VAR INIT(C value)

However, it is deprecated in C17 and is removed in C23. It is NOT race-free.

Example

_Atomic int a = ATOMIC_VAR INIT(50);

16.8 Memory Order in C

Before studying the memory order in C, let us see some terminology.

16.8.1 Acquire, Release, and Consume

Reading an atomic variable is called acquire operation, that is, acquire operation is
atomic read operation, and writing an atomic variable is called release operation,
that is, atomic write operation.

The word load can be used for read operation. In C, we have race-free atomic load
function. In a similar manner, we can use the word store for write operation.

The sentence

16.8 Memory Order in C 365

“Let’s say that a is an atomic variable, and when a thread acquires a, it can see value
of the a released in another thread.”

means that

“Let’s say that a is an atomic variable, and when a thread reads the value of atomic a,
it can see value of the atomic a written in another thread.”

In a C program, besides atomic read and write operations, nonatomic read and
write operations also exist.

Consume is a less-strict version of acquire. You cannot reorder anything before
acquire operation. However, before consume operation you cannot reorder only
those that depend on the loaded atomic value.

Fences
The word fence is used for nonatomic variables. Acquire of a nonatomic variable is
called fence acquire, and similarly release of a nonatomic variable is called fence
release.

16.8.2 Memory Order

The enumerated type memory_order is used to order memory accesses of regular
nonatomic operations around an atomic operation. It is used to synchronize opera-
tions on distinct threads.

It is defined in <stdatomic.h> as

typedef enum

{
memory order_ relaxed = __ ATOMIC_ RELAXED,
memory order_ consume = __ ATOMIC_CONSUME,
memory order_ acquire = __ ATOMIC_ACQUIRE,
memory order_ release = __ ATOMIC_RELEASE,

memory order_acq _rel = _ATOMICZACQ_REL,
memory order_ seq_cst __ATOMIC_SEQ CST

} memory order;

By default, for atomic operations, sequentially consistent memory ordering is
used by the compiler. However, default choice can hurt performance.

The compiler can reorder memory access using selected member of
memory_order.

memory order relaxed

No order is guaranteed concerning locking and normal memory accesses.

366 16 Atomic Data Types

memory order consume

Assume that an atomic load operation is performed, no reads or writes in the
current thread that depend on the value being loaded can be done.

This is almost the same as memory_order_acquire, except for that the ordering is
guaranteed only for dependent data.

memory order_ acquire

Assume that an atomic load operation is performed, no reads or writes in the
current thread that depend on the value being loaded can be done.

memory order release

Assume that an atomic store operation is performed, no reads or writes in the
current thread can be done after this store operation. This prevents ordinary loads
and stores from being reordered after the store operation.

memory order acq rel

This is a hybrid of memory_order_acquire and memory_order_release. Assume
inside a thread one variable is loaded and another one is stored, no memory reads or
writes in the current thread can be reordered before the load, or after the store. That
is, read and write operations cannot be reordered around the operation.

memory order seq cst

A load operation with this memory order performs an acquire operation, a store
performs a release operation, and read—modify—write performs both an acquire
operation and a release operation (Table 16.1).

atomic_thread_fence
The prototype of this function is

void atomic_thread fence (memory order order);

This function achieves a memory synchronization order for nonatomic and
relaxed atomic accesses without an associated atomic operation.

atomic_signal_fence
The prototype of this function is

void atomic_signal_ fence (memory order order);

16.8 Memory Order in C 367

Table 16.1 Supported memory orders for atomic functions

Supported memory orders
Functions relaxed acquire release acq_rel seq_cst
load Y R X X \
store N x v % N
Exchange, compare exchange, fetch v v \ y v
fence y v \ v y

The atomic_signal_fence() achieves synchronization of nonatomic and relaxed
atomic accesses between a thread and a signal handler that are included in the same
thread.

16.8.3 Atomic Functions with Memory Order

In the previous sections, we explained the functions

void atomic_store(volatile A *object, C desired);
C atomic_load(const volatile A *object);

C atomic_exchange(volatile A *object, C desired);

bool atomic_compare exchange strong(volatile A *object, C *expected,\
C desired) ;

bool atomic_compare exchange weak(volatile A *object, C *expected,\
C desired) ;

C atomic_fetch key(volatile A *object, M operand) ;
bool atomic_ flag test and set(volatile atomic_flag *object);
void atomic_flag clear(volatile atomic_flag *object);
These functions can be used with memory order property; the operation of the

functions is the same, and the prototypes of these functions with memory order input
are

368

16 Atomic Data Types

void atomic_store explicit(volatile A *object, C desired, \

memory order order) ;

C atomic_load explicit(const volatile A *object, memory order order);
C atomic_exchange explicit(volatile A *object, C desired,\

memory_ order order) ;

bool atomic_compare exchange strong explicit(volatile A *object,\

C *expected,\
C desired,\
memory order success, memory order failure);

bool atomic_compare exchange weak explicit(volatile A *object,\

C *expected, C desired,\
memory order success,\
memory order failure) ;

C atomic_fetch key explicit(volatile A *object, M operand,\

memory order order) ;

bool atomic_flag test and set_explicit(volatile atomic_flag *object,\

memory_order order) ;

void atomic_flag clear explicit(volatile atomic_flag *object,\

memory order order) ;

Problems

1.

|9 I SN

S O 0

12.
13.
14.

Why do we use atomic data types? Can we use them in ordinary C programs that
do not contain threads?

. Are there any differences between the use of atomic data types and mutex

functions? Which one is preferable and why?

. Define an atomic integer variable in three different ways.
. Define an atomic double variable.
. Assume that a is an atomic variable; is the operation a=a+2 an atomic

operation?

. Write three operations that are atomic by default.

. What does lock-free atomic type mean?

. Write three lock-free atomic types.

. Write a C code to check whether an atomic integer is lock-free or not.

. Consider the function atomic_fetch_key(). What can be replaced for the word

"key" in this function?

. Explain the use of atomic_store() and atomic_load() functions.

What is the difference between atomic_flag and atomic_bool?
In which case is it beneficial to use memory orders?
How many memory order methods are available, and list them.

®

Check for
updates

Chapter 17
File Operations in C

17.1 File Types

There are two types of files used in C programming:

— Text files
— Binary files

Text files have extension .txt, whereas binary files have extension .bin.

17.2 File Operations

File operations consist of

— Opening a file
— Reading or writing the file
— Closing the file

Every opened file after reading or writing must be closed before a program is
terminated.

17.2.1 Opening a File

Files can be opened for reading and writing using the fopen() function. The protype
of the fopen() function is

FILE* fopen(const char* fileName, const char* operationMode) ;

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 369
O. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45361-8_17&domain=pdf
https://doi.org/10.1007/978-3-031-45361-8_17#DOI

370

17 File Operations in C

For text files, operationMode can be one of these:

r+

w+

a+t+

The text file is opened just for reading. If the file does not exist, NULL is
returned by fopen().

The text file is opened just for writing. If the file exists, its contents are
overwritten. If the file does not exist, a new file is created.

The text file is opened for appending only. Appending means concatenating
data to the end of the file. If the file does not exist, a new file is created.

The text file is opened for both reading and writing. If the file does not exist,
NULL is returned by fopen().

The text file is opened for both reading and writing. If the file exists, its
contents are overwritten. If the file does not exist, a new file is created.

The text file is opened for both reading and appending. If the file does not exist,
a new file is created.

For binary files, ©perationMode can be one of these:

rb

wb

ab

rb+

wb+

ab+

The binary file is opened just for reading. If the file does not exist, NULL is
returned by fopen().

The binary file is opened just for writing. If the file exists, its contents are
overwritten. If the file does not exist, a new file is created.

The binary file is opened for appending only. Appending means
concatenating data to the end of the file. If the file does not exist, a new file
is created.

The binary file is opened for both reading and writing. If the file does not
exist, NULL is returned by fopen().

The binary file is opened for both reading and writing. If the file exists, its
contents are overwritten. If the file does not exist, a new file is created.

The binary file is opened for both reading and appending. If the file does not
exist, a new file is created.

17.2.2 Closing a File

An opened file is closed using the fclose() function; the prototype of the fclose()
function is

fclose(FILE* fp);

17.2 File Operations 371

Example 17.1 This example illustrates how to open a text for writing file.

#include <stdio.h> Code
#include <stdlib.h> 17.1

int main ()
{
FILE* fp; // file pointer
fp = fopen("myFile.txt", "w");

if (fp == NULL)

{
printf("File cannot be opened.");
exit(l);

}

else

{

printf("File is opened successfully.");
}
fclose(fp); // close the file

Output(s) myFile.txt

17.2.3 Reading and Writing of a Text File
17.2.3.1 Writing to a Text File

We can write data to a file in C using the fprintf(), fputs(), and fputc() functions.
fprintf ()

fprintf() function is used to write data to a text file; its prototype is

int fprintf(FILE* fp, const char* format,...); (before C99)
int fprintf (FILE* restrict fp, const char* restrict format,...);(C99)
int fprintf_ s(FILE* restrict fp, const char* restrict format,...); (Cll)

It can also be used for strings without specifying format as

int fprintf(FILE* fp, const char* str);

372 17 File Operations in C

Example 17.2 In this example, we open a file and write the text “Hello World!” to
the file.

#include <stdio.h> Code
#include <stdlib.h> 17.2

int main()
{
FILE* fp; // file pointer
fp = fopen("myFile.txt", "w");

fprintf (fp,"Hello World-1! \n"); // \n means go to next line

fprintf (fp,"Hello World-21!");

Output(s)

myFile.txt File
17.3

Hello World-1!
Hello World-2!

In this example, for simplicity of coding, we did not check the return values of
fopen() and fprintf() functions. Our aim here was to illustrate the use of fprintf()
function; otherwise, they should always be checked.

In Code 17.2, the statement

fprintf (fp,)
can also be written as

fprintf (fp, ,),

Example 17.3 In this example, we show how to get an integer from the user and
write it to a text file.

17.2 File Operations

#include <stdio.h>
#include <stdlib.h>

int main()

{ .
int num;
FILE *fp;
fp = fopen(
printf (
scanf (, &num) ;

fprintf (fp,

// fprintf (fp, "%s

fprintf (fp,

fclose (fp) ;

,num) ;

Code
17.4

)

"You entered 2: ");

Output(s) Please enter an integer : 38

fputs ()

fputs() function can be used to write data to a text file; its prototype is

int fputs(const char* str,

int fputs(const char* restrict str, FILE* restrict fp);

myFile.txt File

You entered : 38

17.5

FILE* fp);

(before C99)

373

(C99)

374 17 File Operations in C

Example 17.4

finclude <stdio.h> Code
#include <stdlib.h> 17.6

int main()

{ FILE* fp; // file pointer
fp = fopen(,)

fputs(,fp) ;

fclose(fp); // close the file

Note the arguments of fprintf() and fputs() functions in Codes 17.4 and 17.6. File
pointer is written as first argument in fprintf(), whereas it is written as second
argument in fputs().

Output(s)

myFile.txt File
17.7

Hello World1!

fpute ()
fputc() function is used to write a single character to a text file; its prototype is
int fputc(int ch, FILE* fp);

where ch is converted to unsigned char just before being written.

17.2 File Operations

Example 17.5

#include <stdio.h> Code
#include <stdlib.h> 17.8
int main()
{
FILE* fp; // file pointer
fp = fopen("myFile.txt", "w");
fputc (,£p) ;
fputc('c', £fp);
fputc(Ep) ;
fputc (£fp);
fpute('o',£fp);
fputc(+Ep) ;
fclose(fp); // close the file
}

Output(s)

myFile.txt

Hello!

File
17.9

17.2.3.2 Reading a Text File

A text file in C can be read using the functions fscanf(), fgets(), and fgetc().

fscanf ()

fscanf() function is used to read data from a text file; its prototype is

int fscanf (FILE* fp, const char* format,...);

int fscanf (FILE* restrict fp, const char* restrict format,...);

(before C99)

375

(C99)

fscanf() function reads text file until a space or new line \n' is met or end of file is

reached.

376

17 File Operations in C

Example 17.6 Assume that we have the text file myFile.txt.

File

myFile.txt
17.10

Hello World-1!
Hello World-2!
Hello World-3!

Output(s) Hello

#include <stdio.h>

Code
17.11

int main()

{
FILE * fp;
int num;

fp = fopen("myFile.txt", "r");

char str[10];

fscanf (fp,"%s", str);
printf ("$s\n", str);

Let us add two more lines to the code as in Code 17.12.

#include <stdio.h> Code
17.12
int main()
{
FILE * fp;
fp = fopen("myFile.txt", "r");

char str[10];

fscanf (fp, "%s", str);
printf ("$s\n", str);

fscanf (fp,"%s", str);
printf ("%s\n", str);

17.2 File Operations 371

Output(s)
Hello
World-1!

Instead of repeating fscanf() and printf() functions, we can write a loop as in Code
17.13 to read all the contents of the text file.

#include <stdio.h> Code
17.13
int main()
{
FILE* fp;
int ret;
fp = fopen("myFile.txt", "r");
char str[10];
while (1)
{
ret = fscanf (fp,"%s", str);
if (ret == EOF)
break;
printf("%s", str);
}
}

Output(s) HelloWorld-1!HelloWorld-2!HelloWorld-3!
The C function feof() can be used to check the end of file. The prototype of the
feof() function is

int feof (FILE* f£p);

The C function feof() returns zero if end of file is NOT reached.
Code 17.13 can be written using feof() as in Code 17.14.

378 17 File Operations in C

#include <stdio.h> Code
17.14
int main()
{
FILE* fp;
int ret;

fp = fopen("myFile.txt", "r");
char str[10];

while (! feof (£fp))
{

fscanf (fp,"%s", str);

’

printf ("%s", str);
}

Output(s) HelloWorld-1!HelloWorld-2!HelloWorld-3!

Example 17.7 Assume that we have the text file myFile.txt.

#include <stdio.h> Code
17.15

int main()

{

printf ("Value of EOF is: %d\n", EOF);

}

Output(s) Value of EOF is: —1

Example 17.8 Assume that we have the text file myFile.txt.

myFile.txt | File
17.16

25789
Hello World!

17.2 File Operations

Output(s) 25

#include <stdio.h> Code
17.17
int main()
{
FILE * fp;
int a;
fp = fopen("myFile.txt", "r");
char str[10];
fscanf (fp, "%d", &a);
printf("%d ", a);
}

379

Let us add to the code two more fscanf() and printf() expressions as in Code

17.18.

Output(s) 25 789

finclude <stdio.h> Code
17.18
int main()
{
FILE * fp;
int a;
fp = fopen("myFile.txt", "r");
char str[10];
fscanf (fp, "%d", &a);
printf("3d ", a);
fscanf (fp,"%d", &a);
printf("%d ", a);
fscanf (fp,"%s", str);
printf("%s ", str);
}
Hello

17.2.4 Reading and Writing of a Binary File

Binary files have usually extension .bin in your computer. Data is stored in binary,
that is, O and 1, form.

380 17 File Operations in C
17.2.4.1 Writing to Binary Files
Binary files can be written using the function fwrite() .
fwrite()
The prototype of the fwrite() function is

size t fwrite(const void* ptr, size_t element_size,\
size_t count, FILE* fp); (before C99)

size_t fwrite(const void* restrict ptr, size t size,\
size_t count, FILE* restrict fp); (C99)

where

— ptr is a pointer pointing to the data block to be written
— element_size is the size of an element of the data block
— count is the number of elements in the data block

— fp is the file pointer

Example 17.9 In this example, we write three integers to a binary file. Return value
of the fwrite() function is the number of elements written to the file.

#include<stdio.h> Code
17.19

int main()

{ FILE* fp;
int a[3] = {34, 67, 89};
fp = fopen("myFile.txt" , "w");
unsigned long ret = fwrite(a, sizeof(int), 3 , fp);

printf("ret = %S1lu", ret);

fclose (fp) ;

Output(s) ret =3
Although the file name is myFile.txt, it is a binary file, and its contents cannot be
viewed.

17.2 File Operations 381

17.2.4.2 Reading Binary Files
Binary files can be read using the function fread() .
fread()

The prototype of the fread) function is

size_t fread(void* ptr, element size, size_t count, FILE* £fp);

size_t fread(void* restrict ptr, element_size,\ (before C99
size_t count, FILE* restrict £fp); (C99)

where

— ptr is the head of the address where read data is to be written
— element_size is the size of an element to be read

— count is the number of elements to be read

fp is the file pointer

Example 17.10 In this example, we first write three integers to a binary file, and
then read these three integers from the file and print them. However, before reading
the integers from file we close the file and change the file mode from write to read.

#include<stdio.h> Code
17.20

int main()
{

FILE* fp;

int a[3] = {34, 67, 89};

int b[3];

fp = fopen("myFile.txt" , "w");

fwrite(a, sizeof(int), 2 , fp)

fclose (fp) ;

fp = fopen("myFile.txt" , "r"); // we change file mode here

fread (b, sizeof(int), 3 , fp),

printf ("Read array elements are : %d, %d, %d", al[0], a[l]l, a[2]):;

fclose (fp) ;

382 17 File Operations in C

Output(s) Read array elements are : 34, 67, 89

Example 17.11 In this example, we illustrate how to write structure objects to a
binary file and read it. We first define a structure as a global data type as in Code
17.21.

#include <stdio.h> Code
17.21

struct student

{
int st_id;
char st _name[20];

}

int main()
{
FILE* fp;

We define two structure arrays as in Code 17.22. The first one is initialized. We
open a binary file using the fopen() function.

#include <stdio.h> Code
17.22

struct student

{
int st_id;
char st name[20];

};

int main()
{
FILE* fp;

struct student stl[’] = {
"Ilhan Gazi"},
"Orhan Gazi"}

struct student st2[”];

fp = fopen("myFile.bin", "w");

The first structure array is written to binary file as in Code 17.23. The file is closed
using the fclose() function.

17.2 File Operations

#include <stdio.h>
struct student
{
int st_id;
char st_name[20];
}i
int main()
{
FILE* fp;
struct student stl[2] = {
(3
}i
struct student st2[2];
fp = fopen("myFile.bin", "w");
fwrite(stl, sizeof(struct student),
fclose (fp) ;
}

Code
17.23

9, "Ilhan Gazi"},
{68545, "Orhan Gazi"}

2, £p);

383

The same binary file is opened for reading operation and read data is placed into

the second structure array as in Code 17.24.

384 17 File Operations in C

#include <stdio.h> Code
17.24

struct student
{
int st_id;
char st_name[20];

}i

int main ()

{
FILE* fp;

struct student stl[2] = {
S "Ilhan Gazi"},
{68545, "Orhan Gazi"}

struct student st2[2];

fp = fopen("myFile.bin", "w");

fwrite(stl, sizeof(struct student), 2, £fp);
fclose (fp) ;

fp = fopen("myFile.bin", "r");

fread(st2, sizeof(struct student), 7, fp);

Finally, the read data is displayed using the printf() function as in Code 17.25, and
the opened file is closed using the fclose() function. In Code 17.25, we omitted
conditional expressions to check the results of file opening, file writing, file reading,
and file closing operations for the simplicity of the code to focus on the main steps.
However, they should never be ignored in professional coding.

17.2 File Operations 385

#include <stdio.h> Code
17.25
struct student
{
int st _id;
char st_name[20];
}i
int main()
{
FILE* fp;
struct student stl[2] = {
{38729, "Ilhan Gazi"},
{68545, "Orhan Gazi"}
};
struct student st2[2];
fp = fopen("myFile.bin", "w");
fwrite(stl, sizeof(struct student), 2, £fp);
fclose (fp) ;
fp = fopen("myFile.bin"™, "xr");
fread(st2, sizeof(struct student), 2, £fp);
printf ("Student ID is %d \n", st2[0].st_id);
printf ("Student name is %s\n", st2[0].st_name) ;
printf ("Student ID is %d \n", st2[1].st_id);
printf ("Student name is %s", st2[1].st name);
fclose (fp) ;
}
Output(s)

Student ID is 38729
Student name is Ilhan Gazi
Student ID is 68545
Student name is Orhan Gazi

fseek ()

When a file is opened, the file pointer points to the beginning of the file. The
function fseek() is used to move file pointer to a specific location in the file. The
prototype of the fseek() function is

386 17 File Operations in C
int fseek (FILE* fp, long int offset, int position);

where

fp is the file pointer
offset is the number of bytes to offset from the position of the file pointer
position is the position of the file pointer from where the offset is added

It has three values

SEEK _END denotes the end of the file
SEEK_SET denotes the beginning of the file
SEEK_CUR denotes the current position of the file pointer

rewind ()

The function rewind() is used to move file pointer to the beginning of the file; its
prototype is

void rewind (FILE*fp) ;

Problems

1. Write a C program that writes the string "I like C programming" to a text file.
Write another C program that opens the previously written text file and displays
each word of the text in the file separately.

2. Define a structure that contains, integer, double, and string data types. Define an
array of structures and initialize the array. Write the array into a binary file and
read the file and display the content of the file.

Bibliography

1. C99 — ISO/IEC 9899:1999
2. C11 — ISO/IEC 9899:2011
3. C17 — ISO/IEC 9899:2018
4. C23 — ISO/IEC 9899:2023

© The Editor(s) (if applicable) and The Author(s), under exclusive license 387
to Springer Nature Switzerland AG 2024
0. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8

https://doi.org/10.1007/978-3-031-45361-8#DOI

Index

A

Absolute value, 161, 162

Arithmetic, 43, 74, 158, 160, 311, 354

Array initialization, 177-183

Arrays, 81, 97, 175-191, 224, 227, 230-237,
382, 383

Array size, 177, 178

Array storage, 182

Atomic functions, 354-364, 367-368

Atomic integers, 344346, 350, 351, 353, 354,
368

Atomic pointer, 346-347

Atomic types, 344, 352, 362, 368

B

Binary, 1, 3-6, 8, 10, 21, 22, 24, 27, 28, 38, 40,
43,51-53, 58, 68, 71, 379

Binary files, 369, 370, 379-386

Bit fields, 91-92

Boolean condition, 99, 126

C

Char, 19-25, 38, 51-53, 63, 93, 94, 96, 176,
214, 234, 374

Complex number, 97, 157-173

Complex sine, 168

Conditional compilation, 259, 270-274

Conditional statements, 99-121, 142

Conjugate, 163

Const, 277-279

Conversion, 3-7, 67-76, 218, 219

© The Editor(s) (if applicable) and The Author(s), under exclusive license

to Springer Nature Switzerland AG 2024

D

Data types, 15-64, 71, 73-78, 83, 84, 87,
92-94, 102, 154, 157, 158, 194, 207,
209, 210, 215, 217, 218, 228, 241, 277,
278, 281, 289, 293, 295-301, 313, 334,
343-346, 352, 357-359, 363, 368,
382, 386

Dereferencing operator, 207-209

Designated initializer, 79—83

Directives, 17, 18, 94, 259-274

Double, 19, 39, 41, 63, 69, 72, 101, 158,
160-162, 165, 176, 207, 239, 277, 345,
346, 368, 386

Do-while loop, 147-149, 151, 154-156

E
Enumeration, 277-287, 313
Explicit, 67, 70-72, 79, 218, 219, 284

F

File close, 370, 381

File opening, 384

File reading, 384

Files, 18, 122, 265, 281, 298, 303, 316, 369

File writing, 384

Fixed width, 289, 298

Float, 19, 39, 41, 63, 67, 68, 71, 72, 96, 100,
158, 161, 162, 165, 176, 191, 207, 278,
345-347

For loop, 125-140, 149, 151-153, 156, 179,
184, 186, 340, 351

389

0. Gazi, Modern C Programming, https://doi.org/10.1007/978-3-031-45361-8

https://doi.org/10.1007/978-3-031-45361-8#DOI

390

Function arguments, 92-93, 189, 190, 201, 222,
223,230

Function calling, 202

Function prototype, 196, 314, 331

Functions, 15, 69, 92, 104, 127, 222, 269, 280,
290, 303, 313, 375

H

Hexadecimal, 2, 4-8, 12, 13, 24, 27-29, 33,
35-38, 64, 181, 183, 299, 300

Higher order, 73-74

I

If-else, 99, 110-112, 264

Imaginary, 97, 158, 161, 173

Implicit, 67-70

Information loss, 7376

Int, 15, 16, 19, 20, 63, 68, 75, 93, 94, 354

Integer, 1, 19, 57, 67, 96, 99, 156, 208, 267,
289, 303, 314, 328, 350, 372

Interrupts, 280, 303-308, 310, 312

int_leastN_t, 295-296, 299

intN_t, 299

L

Ladder structure, 104—107, 273

Little-endian, 12-13, 29, 181, 208

Lock-free, 352-354, 362, 368

Logical, 43, 47-50, 63, 103, 107, 134,
143, 147

Loop statements, 125-156

M

Macros, 161, 259-274, 289-293, 295-298,
303, 304, 308, 313, 344, 352,
362, 364

Memory order, 364—368

Multiconditional, 107-110, 133, 144

Multidimensional arrays, 185-188

Multiline macros, 262-265

Mutex, 332-340, 368

Mutex lock, 333, 352

Mutex unlock, 333, 334, 339, 341

N

Nested loops, 138, 144
Nested structures, 86—-87
Number bases, 1-2

Index

(0]

Octal, 24, 6, 12, 24, 28-29, 64, 299, 300

Operators, 15-66, 107, 109, 112-116, 134, 158,
175, 207, 209, 215, 274, 284, 285, 314,
343, 353

P

Parallel processing, 313-320, 352

Pointers, 88, 90, 200, 201, 207-252, 277-279,
285, 286, 305, 314, 321, 323, 346, 374,
380, 381, 385, 386

Predefined macros, 267-270

Preprocessor, 259-261, 264, 265

R

Race condition, 332, 343, 347, 350,
351, 356

Race prevention, 347-352

Raise function, 312

Real, 19, 39, 40, 44, 45, 97, 157, 158, 160,
161, 173

Register, 11, 12, 22, 29, 30, 36, 181, 210, 245,
279, 280, 284-287

Restrict, 279, 287

S

Self-referential, 89-90

SIGINT, 304-308, 310

Signal handling, 304, 310

Signals, 303-312, 367

Signed, 19, 27, 38, 53, 74-76, 289, 290,
292-296, 299, 300

SIGQUIT, 308-309

sizeof, 22-23, 26, 63, 209, 215, 216, 314, 343

Storage classes, 277-287

Structures, 77-96, 99-103, 107-110, 112,
125, 126, 137, 139, 144, 145, 151,
194, 202, 314, 315, 346, 352, 382,
383, 386

Switch statement, 116-123

T

Text files, 369-379, 386

Thread creation, 313-314, 317

Threads, 313-340, 343, 347-352, 357,
365-368

Two’s complement, 8—10

Typedef, 83-85, 96, 345

Type qualifiers, 277-286, 345

Index 391

U \'%

uint_leastN_t, 296 Variable address, 229
uintN_t, 293-295 Void pointer, 215-221, 226
Unions, 63, 94-97 Volatile, 279, 280

Unsigned, 23, 24, 34-37, 51, 52, 54, 74, 75,
248, 293, 299, 300, 374
Unsigned integer, 8, 34-39, 296, 297 w
While-loop, 140-146, 148, 150, 151, 153, 154

	Preface
	C99 Standard
	C11 Standard
	C17 Standard
	C23 Standard

	Contents
	Chapter 1: Representation of Numbers and Characters in Computer
	1.1 Number Bases
	1.1.1 Decimal Numbers
	1.1.2 Binary Numbers
	1.1.3 Octal Numbers
	1.1.4 Hexadecimal Numbers

	1.2 Conversion Between Bases
	1.2.1 Binary to Decimal Conversion
	1.2.2 Binary to Octal Conversion
	1.2.3 Binary to Hexadecimal Conversion
	1.2.4 Decimal to Binary Conversion
	1.2.5 Octal to Binary Conversion
	1.2.6 Hexadecimal to Binary Conversion
	1.2.7 Hexadecimal to Decimal Conversion

	1.3 Positive Integers
	1.4 Two´s Complement Form
	1.5 Negative Integers
	1.6 Registers
	1.7 Memory Units
	1.8 How Are the Integers Stored in Computer Memory, Big-Endian, and Little-Endian?

	Chapter 2: Data Types and Operators
	2.1 How to Start Writing a C Program?
	2.2 Comments in C Programming
	2.3 The First C Program
	2.4 Variables and Data Types
	2.5 Binary Number Representation in Modern C
	2.6 sizeof Operator in C
	2.7 Unsigned Char Data Type
	2.8 Left and Right Shift Operators in C
	2.9 Integer Data Type
	2.10 Hexadecimal and Octal Numbers
	2.11 How Are Integers Stored in Computer Memory?
	2.11.1 Short Integer Data Type

	2.12 Why Do We Have Both Integer and Short Integer Data Types?
	2.13 Long Integer and Long-Long Integer Data Types
	2.14 Unsigned Integer Data Type
	2.15 Floating-Point Number in C
	2.15.1 IEEE 754 Floating-Point Standard (Single Precision)

	2.16 Keyboard Input Using scanf in C
	2.17 Operators in C Programming
	2.17.1 Arithmetic Operators
	2.17.1.1 Division of Integer Numbers
	2.17.1.2 Multiplication of Integer Numbers

	2.17.2 Remainder Operator %
	2.17.3 Augmented Assignment Operators
	2.17.4 Logical Operators
	2.17.5 Bitwise Operators in C
	2.17.6 Increment and Decrement Operators

	2.18 Operator Precedence

	Chapter 3: Type Conversion in C
	3.1 Type Conversion Methods
	3.1.1 Implicit Conversion
	3.1.2 Explicit Conversion

	3.2 Information Loss When a Higher-Order Data Is Converted to a Lower-Order Data
	3.3 Information Loss When Conversion Is Performed Between Signed and Unsigned Data Types

	Chapter 4: Structures
	4.1 Introduction
	4.2 Initialization of Structure Elements
	4.3 Initialization Using Designated Initializer List
	4.4 Typedef for Structures
	4.4.1 Alternative Use of for Structures

	4.5 Nested Structures
	4.6 Structure Copying
	4.7 Structures with Self-Referential
	4.8 Bit Fields
	4.9 Structures as Function Arguments
	4.10 Structure Padding and Packing in C Programming
	4.11 Unions

	Chapter 5: Conditional Statements
	5.1 Conditional Structure
	5.2 Conditional Ladder Structure (-If Ladder)
	5.3 Multiconditional Structures
	5.4 Syntax of Nested If-Else
	5.5 Conditional Operator in C
	5.6 switch Statement

	Chapter 6: Loop Statements
	6.1 The For-Loop
	6.1.1 Nested For-Loop

	6.2 The While-Loop
	6.2.1 Nested While-Loop

	6.3 The Do-While Loop
	6.4 Continue Statement
	6.5 Break Statement

	Chapter 7: Complex Numbers in Modern C Programming
	7.1 How to Define a Complex Number
	7.2 Complex Operations
	7.3 Calculation of Absolute Value (Norm, Modulus, or Magnitude) of a Complex Number
	7.4 Complex Number Formation
	7.5 Calculation of the Conjugate of a Complex Number in C
	7.6 Calculation of the Argument, That Is, Phase Angle, of a Complex Number in C
	7.7 Calculation of Complex Exponentials
	7.8 Computation of the Complex Natural (Base-e) Logarithm of a Complex Number
	7.9 Complex Power Calculation
	7.10 Square Root of a Complex Number
	7.11 Complex Trigonometric Functions
	7.11.1 The csin Functions
	7.11.2 The ccos Functions
	7.11.3 The ctan Functions
	7.11.4 The cacos Functions
	7.11.5 The casin Functions
	7.11.6 The catan Functions
	7.11.7 Hyperbolic Functions

	Chapter 8: Arrays
	8.1 Syntax for Array Declaration
	8.2 Accessing Array Elements
	8.3 Array Initialization Without Size
	8.4 Array Initialization Using Loops
	8.5 Strings as Array of Characters
	8.6 Multidimensional Arrays
	8.7 Passing an Array to a Function in C

	Chapter 9: Functions
	9.1 Introduction
	9.2 Types of Functions
	9.3 Passing Parameters to Functions
	9.4 Returning More Than One Value
	9.5 Recursive Functions
	9.6 Nested Functions

	Chapter 10: Pointers
	10.1 Definition
	10.2 Address of a Variable
	10.3 NULL Pointer
	10.4 Void Pointer
	10.5 Types of Pointers
	10.5.1 Pointer to a Constant Value
	10.5.2 Pointer to a Constant Address (Constant Pointer)
	10.5.3 Constant Pointer to a Constant Value

	10.6 Function Pointers
	10.6.1 Functions Returning Pointers

	10.7 Pointers and Arrays
	10.8 Multiple Pointers
	10.9 Heap Stack and Code Memories
	10.10 Dynamic Memory Allocation
	10.10.1 malloc() Function
	10.10.2 calloc() Function
	10.10.3 free() Function
	10.10.4 realloc() Function

	10.11 Memory Functions
	10.11.1 Memset Function
	10.11.2 Memcpy Function
	10.11.3 Memmove Function
	10.11.4 Memcmp Function

	Chapter 11: Directives and Macros in C
	11.1 Introduction
	11.2 Preprocessor Directives as Macros
	11.3 Macros as Functions
	11.4 Multiline Macros
	11.5 Directives Used for File Inclusion
	11.6 Predefined Macros
	11.7 Conditional Compilation
	11.8 Concatenation Operator ##

	Chapter 12: Type Qualifiers, Enumerations, and Storage Classes in C
	12.1 Type Qualifiers in C
	12.1.1 Const
	12.1.2 Restrict
	12.1.3 Volatile

	12.2 Storage Classes in C
	12.2.1 Auto
	12.2.2 Extern
	12.2.3 Static
	12.2.4 Register

	Chapter 13: Integer with Exactly N Bits
	13.1 General Form of Fixed Width Integers
	13.2 Macros for printf and scanf
	13.3 uintN_t
	13.4 int_leastN_t
	13.5 uint_leastN_t
	13.6 int_fastN_t
	13.7 uint_fastN_t
	13.8 Macros for printf
	13.9 Macros for scanf

	Chapter 14: Signals in C
	14.1 Introduction
	14.2 Signal Handling
	14.3 SIGINT
	14.4 SIGQUIT
	14.5 Artificial Signal Generation
	14.6 Some of the Most Used Signals

	Chapter 15: Threads in C
	15.1 Introduction
	15.2 Thread Creation
	15.3 Parallel Processing Using Threads
	15.4 pthread_exit() Function
	15.5 pthread_join() Function
	15.6 pthread_self() Function
	15.7 pthread_equal() Function
	15.8 pthread_cancel() Function
	15.9 pthread_detach() Function
	15.10 Synchronizing Threads with Mutexes

	Chapter 16: Atomic Data Types
	16.1 How to Define an Atomic Data Type?
	16.2 Atomic Integer Types
	16.3 Atomic Pointers
	16.4 Race Prevention by Atomic Variables
	16.5 Lock-Free Atomic Types
	16.6 Atomic Assignments, Operators, and Functions
	16.7 Atomic Functions
	16.7.1 atomic_is_lock_free() Function
	16.7.2 atomic_fetch_key() Function
	16.7.3 atomic_store() Function
	16.7.4 atomic_load() Function
	16.7.5 atomic_exchange() Function
	16.7.6 Comparison Functions
	16.7.7 atomic_flag Macro
	16.7.8 atomic_init() Function

	16.8 Memory Order in C
	16.8.1 Acquire, Release, and Consume
	16.8.2 Memory Order
	16.8.3 Atomic Functions with Memory Order

	Chapter 17: File Operations in C
	17.1 File Types
	17.2 File Operations
	17.2.1 Opening a File
	17.2.2 Closing a File
	17.2.3 Reading and Writing of a Text File
	17.2.3.1 Writing to a Text File
	17.2.3.2 Reading a Text File

	17.2.4 Reading and Writing of a Binary File
	17.2.4.1 Writing to Binary Files
	17.2.4.2 Reading Binary Files

	Bibliography
	Index

